15 research outputs found

    Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids

    Get PDF
    Abstract Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.https://deepblue.lib.umich.edu/bitstream/2027.42/148209/1/12977_2019_Article_468.pd

    Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids

    Get PDF
    Background: Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results: We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions: Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs

    Changes in breast density and circulating estrogens in postmenopausal women receiving adjuvant anastrozole

    Get PDF
    Factors associated with an increased risk of breast cancer include prior breast cancer, high circulating estrogens, and increased breast density. Adjuvant aromatase inhibitors are associated with a reduction in incidence of contralateral breast cancer. We conducted a prospective, single-arm, single-institution study to determine whether use of anastrozole is associated with changes in contralateral breast density and circulating estrogens. Eligible patients included postmenopausal women with hormone receptor-positive early-stage breast cancer who had completed local therapy, had an intact contralateral breast, and were recommended an aromatase inhibitor as their only systemic therapy. Participants received anastrozole 1 mg daily for 12 months on study. We assessed contralateral breast density and serum estrogens at baseline, 6, and 12 months. The primary endpoint was change in contralateral percent breast density from baseline to 12 months. Secondary endpoints included change in serum estrone sulfate from baseline to 12 months. Fifty-four patients were accrued. At 12 months, compared with baseline, there was a nonstatistically significant reduction in breast density (mean change: -16%, 95% CI: -30 to 2, P = 0.08) and a significant reduction in estrone sulfate (mean change: -93%, 95% CI: -94 to -91, P < 0.001). Eighteen women achieved 20% or greater relative reduction in contralateral percent density at 12 months compared with baseline; however, no measured patient or disease characteristics distinguished these women from the overall population. Large trials are required to provide additional data on the relationship between aromatase inhibitors and breast density and, more importantly, whether observed changes in breast density correlate with meaningful disease-specific outcomes

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes

    Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication

    No full text
    Abstract Background Domesticated from gray wolves between 10 and 40 kya in Eurasia, dogs display a vast array of phenotypes that differ from their ancestors, yet mirror other domesticated animal species, a phenomenon known as the domestication syndrome. Here, we use signatures persisting in dog genomes to identify genes and pathways possibly altered by the selective pressures of domestication. Results Whole-genome SNP analyses of 43 globally distributed village dogs and 10 wolves differentiated signatures resulting from domestication rather than breed formation. We identified 246 candidate domestication regions containing 10.8 Mb of genome sequence and 429 genes. The regions share haplotypes with ancient dogs, suggesting that the detected signals are not the result of recent selection. Gene enrichments highlight numerous genes linked to neural crest and central nervous system development as well as neurological function. Read depth analysis suggests that copy number variation played a minor role in dog domestication. Conclusions Our results identify genes that act early in embryogenesis and can confer phenotypes distinguishing domesticated dogs from wolves, such as tameness, smaller jaws, floppy ears, and diminished craniofacial development as the targets of selection during domestication. These differences reflect the phenotypes of the domestication syndrome, which can be explained by alterations in the migration or activity of neural crest cells during development. We propose that initial selection during early dog domestication was for behavior, a trait influenced by genes which act in the neural crest, which secondarily gave rise to the phenotypes of modern dogs

    Duplications and losses in gene families of rust pathogens highlight putative effectors

    Get PDF
    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity

    Validation of a Molecular Sex Marker In Three Sturgeons From Eastern North America

    No full text
    Despite the importance of sex-specific information for sturgeon conservation and management, sex identification has been a major challenge outside of mature adults on spawning grounds. Recent work identified a sex-specific locus (AllWSex2) that appears to be broadly conserved across many Acipenserids, but the assay was not validated for all species within the family. We tested the AllWSex2 marker in three sturgeon taxa (shortnose sturgeon Acipenser brevirostrum, Gulf sturgeon A. oxyrhinchus desotoi, and Atlantic sturgeon A. oxyrhinchus oxyrhinchus) from the Atlantic and Gulf of Mexico Coasts of North America to validate its use for sex identification. Our results indicate AllWSex2 is conserved in all three taxa, presenting a new opportunity to derive sex-specific information from tissue samples, which are routinely collected from these taxa. We found high concordance (range: 97–100%) between genotypic and phenotypic/histological methods, suggesting the assay is broadly effective. However, the small amount of discordance between the methods (\u3c 3%) suggests further refinement may be possible

    Long-read assembly of a Great Dane genome highlights the contribution of GC-rich sequence and mobile elements to canine genomes

    Get PDF
    National audienceTechnological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation
    corecore