37 research outputs found

    Precipitation extremes over La Plata Basin –Review and new results from observations and climate simulations

    Get PDF
    Monthly and daily precipitation extremes over La Plata Basin (LPB) are analyzed in the framework of the CLARIS-LPB Project. A review of the studies developed during the project and results of additional research are presented and discussed. Specific aspects of analysis are focused on large-scale versus local processes impacts on the intensity and frequency of precipitation extremes over LPB, and on the assessment of specific wet and dry spell indices and their changed characteristics in future climate scenarios. The analysis is shown for both available observations of precipitation in the region and ad-hoc global and regional models experiments. The Pacific, Indian and Atlantic Oceans can all impact precipitation intensity and frequency over LPB. In particular, considering the Pacific sector, different types of ENSO events (i.e. canonical vs Modoki or East vs Central) have different influences. Moreover, model projections indicate an increase in the frequency of precipitation extremes over LPB during El Niño and La Ninã events in future climate. Local forcings can also be important for precipitation extremes. Here, the feedbacks between soil moisture and extreme precipitation in LPB are discussed based on hydric conditions in the region and model sensitivity experiments. Concerning droughts, it was found that they were more frequent in the western than in the eastern sector of LPB during the period of 1962–2008. On the other hand, observations and model experiments agree in that the monthly wet extremes were more frequent than the dry extremes in the northern and southern LPB sectors during the period 1979–2001, with higher frequency in the south.Published211-2304A. Clima e OceaniJCR Journalrestricte

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Burden of intracerebral haemorrhage in Europe: forecasting incidence and mortality between 2019 and 2050

    Get PDF
    Background: Anticipating the burden of intracerebral haemorrhage is crucial for proactive management and building resilience against future health challenges. Prior forecasts are based on population demography and to a lesser extent epidemiological trends. This study aims to utilise selected modifiable risk factors and socio-demographic indicators to forecast the incidence and mortality of intracerebral haemorrhage in Europe between 2019 and 2050. Methods: Three intracerebral haemorrhage risk factors identified in the Global Burden of Diseases, Injuries, and Risk Factors study (GBD 2019)—high systolic blood pressure, high fasting plasma glucose, and high body mass index—were utilised to predict the risk-attributable fractions between 2019 and 2050. Disease burden not attributable to these risk factors was then forecasted using time series models (autoregressive integrated moving average [ARIMA]), incorporating the Socio-demographic Index (SDI) as an external predictor. The optimal parameters of ARIMA models were selected for each age-sex-country group based on the Akaike Information Criterion (AIC). Different health scenarios were constructed by extending the past 85th and 15th percentiles of annualised rates of change in risk factors and SDI across all location-years, stratified by age and sex groups. A decomposition analysis was performed to assess the relative contributions of population size, age composition, and intracerebral haemorrhage risk on the projected changes. Findings: Compared with observed figures in 2019, our analysis predicts an increase in the burden of intracerebral haemorrhage in Europe in 2050, with a marginal rise of 0.6% (95% uncertainty interval [UI], −7.4% to 9.6%) in incident cases and an 8.9% (−2.8% to 23.6%) increase in mortality, reaching 141.2 (120.6–166.5) thousand and 144.2 (122.9–172.2) thousand respectively. These projections may fluctuate depending on trajectories of the risk factors and SDI; worsened trends could result in increases of 16.7% (8.7%–25.3%) in incidence and 31.2% (17.7%–48%) in mortality, while better trajectories may lead to a 10% (16.4%–2.3%) decrease in intracerebral haemorrhage cases with stabilised mortality. Individuals aged ≥80 years are expected to contribute significantly to the burden, comprising 62.7% of the cases in 2050, up from 40% in 2019, and 72.5% of deaths, up from 50.5%. Country-wide variations were noted in the projected changes, with decreases in the standardised rates across all nations but varying crude rates. The largest relative reductions in counts for both incidence and mortality are expected in Latvia, Bulgaria, and Hungary—ranging from −38.2% to −32.4% and −37.3% to −30.2% respectively. In contrast, the greatest increases for both measures were forecasted in Ireland (45.7% and 74.4%), Luxembourg (45% and 70.7%), and Cyprus (44.5% and 74.2%). The modelled increase in the burden of intracerebral haemorrhage could largely be attributed to population ageing. Interpretation: This study provides a comprehensive forecast of intracerebral haemorrhage in Europe until 2050, presenting different trajectories. The potential increase in the number of people experiencing and dying from intracerebral haemorrhage could have profound implications for both caregiving responsibilities and associated costs. However, forecasts were divergent between different scenarios and among EU countries, signalling the pivotal role of public health initiatives in steering the trajectories. Funding: TheEuropean Union's Horizon 2020 Research and Innovation Programme under grant agreement No.754517. TheNational Institute for Health and Care Research (NIHR) under its Programme Grants forApplied Research (NIHR202339)

    A Europe-South America network for climate change assessment and impact studies

    Get PDF
    International audienceThe goal of the CLARIS project was to build an integrated European-South American network dedicated to promote common research strategies to observe and predict climate changes and their consequent socio-economic impacts taking into account the climate and societal peculiarities of South America. Reaching that goal placed the present network as a privileged advisor to contribute to the design of adaptation strategies in a region strongly affected by and dependent on climate variability (e. g. agriculture, health, hydro-electricity). Building the CLARIS network required fulfilling the following three objectives: (1) The first objective of CLARIS was to set up and favour the technical transfer and expertise in earth system and regional climate modelling between Europe and South America together with the providing of a list of climate data (observed and simulated) required for model validations; (2) The second objective of CLARIS was to facilitate the exchange of observed and simulated climate data between the climate research groups and to create a South American high-quality climate database for studies in extreme events and long-term climate trends; (3) Finally, the third objective of CLARIS was to strengthen the communication between climate researchers and stakeholders, and to demonstrate the feasibility of using climate information in the decision-making process. © Springer Science + Business Media B.V. 2009
    corecore