179 research outputs found

    Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-α

    Get PDF
    Aims Advanced heart failure is often associated with reduced myocardial fatty acid oxidation capacity. We have previously observed that failing hearts of mice with overexpression of angiotensinogen in the myocardium exhibit marked reduction of key regulatory proteins of fatty acid oxidation. In the present study, we determined whether exposure of adult rat cardiac (ARC) myocytes to angiotensin II (Ang II) influences expression of fatty acid translocase, muscle-type carnitine palmitoyl transferase-I, and medium-chain acyl-CoA dehydrogenase. Methods and results Ang II reduced mRNA expression of the three regulatory proteins in ARC myocytes during the entire 14-days culture period. However, protein expression and palmitate oxidation rate remained unaltered for 7 days, but subsequently markedly decreased. The decrease of protein expression and of fatty acid oxidation coincided with the onset of increased protein expression of tumour necrosis factor-α (TNF-α). The effect of Ang II was completely abolished by either blocking TNF-α formation through inhibition of reactive oxygen species-mediated activation of nuclear factor-κB or by neutralizing TNF-α with a specific antibody. Activation of peroxisome proliferator-activated receptor-α (PPARα) and PPARβ/δ counteracted Ang II-mediated reduction of the fatty acid oxidation pathway. Conclusion Prolonged exposure of cardiac myocytes to Ang II elicits downregulation of the fatty acid oxidation pathway mediated by enhanced synthesis of TNF-

    Inactivation of peroxisome proliferator-activated receptor isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes

    Get PDF
    Inactivation of peroxisome proliferator-activated receptor (PPARs) isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes. PPARs are ligand-activated transcription factors that modulate the transcriptional regulation of fatty acid metabolism and the hypertrophic response in neonatal cardiac myocytes. The purpose of this study was to determine the role of PPAR isoforms in the morphologic and metabolic phenotype transformation of adult cardiac myocytes in culture, which, in medium containing 20% fetal calf serum, undergo hypertrophy-like cell growth associated with downregulation of regulatory proteins of fatty acid metabolism. Expression and DNA-binding activity of PPARα, PPARβ/δ, and PPARγ rapidly decreased after cell isolation and remained persistently reduced during the 14-day culture period. Cells progressively increased in size and developed both re-expression of atrial natriuretic factor and downregulation of regulatory proteins of fatty acid metabolism. Supplementation of the medium with fatty acid (oleate 0.25mM/palmitate 0.25mM) prevented inactivation of PPARs and downregulation of metabolic genes. Furthermore, cell size and markers of hypertrophy were markedly reduced. Selective activation of either PPARα or PPARβ/δ completely restored expression of regulatory genes of fatty acid metabolism but did not influence cardiac myocyte size and markers of hypertrophy. Conversely, activation of PPARγ prevented cardiomyocyte hypertrophy but had no effect on fatty acid metabolism. The results indicate that PPAR activity markedly influences hypertrophic transformation of adult rat cardiac myocytes. Inactivation of PPARα and PPARβ/δ accounts for downregulation of the fatty acid oxidation pathway, whereas inactivation of PPARγ enables development of hypertroph

    Effects of insulin-like growth factor-I on the maturation of metabolism in neonatal rat cardiomyocytes

    Get PDF
    Myocardial metabolism shifts during the perinatal period from predominant utilization of glucose towards oxidation of fatty acids. Expression of enzymes of the fatty acid oxidation (FAO) pathway is under the control of the nuclear receptor/transcription factor peroxisome proliferator-activated receptor α (PPARα). Insulin-like Growth Factor-I (IGF-I) plays an important role in the post-natal growth and differentiation of the heart. We determined the influence of IGF-I on the maturation of myocardial metabolism. In neonatal rat cardiac myocytes, expression of the FAO enzymes MCAD and M-CPT I was induced by treatment with the specific PPARα agonist WY-14643. Concomitant treatment with IGF-I enhanced the expression of both FAO enzymes. By comparison, treatment with FGF-2, which is required for myocyte differentiation of cardiac precursors, did not increase WY-14643-induced expression of FAO enzymes. Despite stimulation of FAO enzyme expression, IGF-I did not further enhance WY-14643-stimulated palmitate oxidation. In contrast, IGF-I relieved WY-14643-mediated inhibition of glucose uptake and promoted storage of fatty acids into cellular neutral lipids. In conclusion, IGF-I promotes a more mature pattern of FAO gene expression but, because of insulin-like metabolic effects, does not concomitantly enhance oxidation of fatty acid

    Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4

    Get PDF
    Objective: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms modifying the expression of GLUT4 in cardiac myocytes. Results: Adult rat cardiomyocytes in primary culture exhibited spontaneous upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38 MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK activation on the glut4 promoter. Conclusion: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis, which is a strong inducer of GLUT4 expressio

    Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

    Get PDF
    © The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe

    Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects

    Get PDF
    Insulin resistance might be associated with an impaired ability of insulin to stimulate glucose oxidation and inhibit lipid oxidation. Insulin action is also inversely associated with TNF-α system and positively related to adiponectin. The aim of the present study was to analyze the associations between serum adiponectin, soluble TNF-α receptors concentrations and the whole-body insulin sensitivity, lipid and glucose oxidation, non-oxidative glucose metabolism (NOGM) and metabolic flexibility in lean and obese subjects. We examined 53 subjects: 25 lean (BMI < 25 kg × m−2) and 28 with overweight or obesity (BMI > 25 kg × m−2) with normal glucose tolerance. Hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese subjects had lower insulin sensitivity, adiponectin and higher sTNFR1 (all P < 0.001) and sTNFR2 (P = 0.001). Insulin sensitivity was positively related to adiponectin (r = 0.49, P < 0.001) and negatively related to sTNFR1 (r = −0.40, P = 0.004) and sTNFR2 (r = −0.52, P < 0.001). Adiponectin was related to the rate of glucose (r = 0.47, P < 0.001) and lipid (r = −0.40, P = 0.003) oxidation during the clamp, NOGM (r = 0.41, P = 0.002) and metabolic flexibility (r = 0.36, P = 0.007). Serum sTNFR1 and sTNFR2 were associated with the rate of glucose (r = −0.45, P = 0.001; r = −0.51, P < 0.001, respectively) and lipid (r = 0.52, P < 0.001; r = 0.46, P = 0.001, respectively) oxidation during hyperinsulinemia, NOGM (r = −0.31, P = 0.02; r = −0.43, P = 0.002, respectively) and metabolic flexibility (r = −0.47 and r = −0.51, respectively, both P < 0.001) in an opposite manner than adiponectin. Our data suggest that soluble TNF-α receptors and adiponectin have multiple effects on glucose and lipid metabolism in obesity

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity

    Get PDF
    peer-reviewedThe present study was aimed to account an eco-friendly synthesis of iron (Fe), copper (Cu) and silver (Ag) nanoparticles (NPs) using green tea and black tea leaves extracts. Synthesized NPs were characterized using SEM, FTIR, EDX and UV/Vis spectroscopy techniques. Antibacterial activity of NPs was assessed against methicillin- and vancomycin-resistance Staphylococcus aureus strains. Antifungal activity was investigated against Aspergillus flavus and A. parasiticus fungal species. Adsorbent capability with aflatoxin B1 (AFB1) was also assessed in solution. Ag-NPs showed superior antibacterial/antifungal activities and reduced the aflatoxins production in comparison to Fe-NPs and Cu-NPs. Adsorption capability of all NPs with AFB1 contamination was found in the order of Fe-NPs > Cu-NPs > Ag-NPs. The equilibrium data showed the favorability of Langmuir isotherm with the adsorption capacity (131–139 ng/mg), Cu-NPs (114–118 ng/mg) and Ag-NPs (110–115 ng/mg). Thermodynamic parameters and kinetic studies revealed that adsorption process is spontaneous, endothermic and followed the pseudo-second order. These results suggest that the synthesized NPs could be effectively utilize as an alternative antibacterial/antifungal agent against diseases caused by multiple drug resistant pathogens. In addition, these metal NPs may be utilize as a possible aflatoxins adsorbent in human food and animal feed such as rice, wheat, maize, red chillies and poultry feed
    corecore