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Regulation of glucose transporter expression in cardiac myocytes:

p38 MAPK is a strong inducer of GLUT4
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Abstract

Objective: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and

upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by

spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms

modifying the expression of GLUT4 in cardiac myocytes. Results: Adult rat cardiomyocytes in primary culture exhibited spontaneous

upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with

IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the

increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38

MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection

experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK

activation on the glut4 promoter. Conclusion: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with

downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis,

which is a strong inducer of GLUT4 expression.

D 2004 European Society of Cardiology. Published by B.V. All rigths reserved.
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1. Introduction

Cardiac myocytes use a variety of substrate for energy

production, including free fatty acids, glucose, lactate and

ketone bodies. Substrate selection is developmentally regu-

lated. During the perinatal period, substrate metabolism

shifts from predominant non-oxidative glucose utilization

to predominant fatty acids oxidation [1]. This shift is

associated with a change in the expression of a number of

regulatory proteins of glucose and fatty acids metabolism
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[2–5], including glucose-transporting proteins. Specifically,

the ubiquitous glucose transporter GLUT1 is largely

replaced by the insulin-regulated isoform GLUT4 [2,3,5].

Myocardial hypertrophy is associated with changes in

glucose metabolism characterized by increased basal glucose

uptake and insulin resistance [6,7]. Basal uptake of glucose

is mediated GLUT1, which is expressed at a low level in the

normal adult heart, but is increased in rat models in vivo

during post-ischemic reperfusion [8] or cardiac failure fol-

lowing remodeling after large myocardial infarction [9].

Conversely expression of GLUT4 is decreased [8,9]. Obser-

vations in GLUT4-null mice indirectly suggests that down-

regulation of GLUT4 may be involved in the pathogenesis of

hypertrophy [10,11]. In addition, GLUT4 deficiency is

associated with impaired post-ischemic recovery [12].

Adult rat cardiomyocytes (ARC) in primary culture re-

express markers of hypertrophy, including ANF and a-
ed by B.V. All rigths reserved.
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smooth muscle actin, which are normally expressed during

fetal and perinatal life, but are downregulated during mat-

uration [13]. The growth factors FGF-2 and IGF-1 modulate

this process in opposite directions [14–16]. FGF-2 accel-

erates expression of markers of dedifferentiation, while IGF-

1 promotes a more differentiated phenotype.

In the present study, we used the model of ARC in

primary culture, first, to determine the influence of growth

factors affecting differentiation of cardiac myocytes on

expression of GLUT4 and, second, to decipher the signaling

pathways involved in the control of expression of GLUT4.
2. Materials and methods

2.1. Animals

We obtained male Sprague–Dawley rats (100–110 g)

from IFFA CREDO (L’Arbresle, France). Newborn Spra-

gue–Dawley rats (1–3 days) were from the Geneva Uni-

versity School of Medicine animal facility. The ethical

committee of the Geneva University School of Medicine

and the Geneva State Veterinary Office approved the study

protocol, which conforms with the Guide for the Care and

Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85-23, revised

1996).

2.2. Adult rat cardiomyocytes culture

Adult rat cardiomyocytes (ARC) were isolated by retro-

grade perfusion of the hearts with collagenase (type II,

Biochrom) [17,18]. Cells were plated onto dishes or cham-

ber slides (Lab-Tek, Nalge Nunc) previously coated with

0.1% gelatin and incubated overnight with culture medium

containing 20% fetal calf serum (FCS). Plating density was

approximately 20,000 cells/cm2. Culture medium was M199

with Earle’s salts (Life Technologies) supplemented with 20

mM creatine, 100 AM cytosine-h-D-arabinofuranoside and

1% FCS.

Recombinant human Fibroblast Growth Factor-2 (FGF-

2, Boehringer-Mannheim) and recombinant human Insulin-

like Growth Factor-1 (IGF-1, Bachem, Basel, Switzerland)

was added from 10 mM CH3COOH stock solutions to the

medium at the time of plating (day 0). The medium was

replaced on day 2.

The MAP kinase inhibitors U0126 (Promega) and

SB203580 (Calbiochem) were also added at the time of

plating from DMSO stock solutions. The final concentration

of DMSO in culture medium (0.1%) had no effect on the

expression of GLUT4.

2.3. Neonatal rat cardiomyocytes culture

Neonatal rat cardiomyocytes (NRC) were isolated by

collagenase digestion and maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM)/medium 199 (4:1) supple-

mented with penicillin and streptomycin [19]. Cells were

plated at a density of 2.5� 105 cells per 3.5-cm dish or

5� 105 cells per 6-cm dish.

2.4. Plasmids and NRC transfection

Marcelle Lavau kindly donated the plasmid p2.2Luc-

2212GLUT4 containing 2.2 kb of the rat glut4 promoter

[20]. We excised the glut4 promoter with KpnI and NheI

and inserted it into the multiple cloning site of pGL3basic

(Promega). The resultant plasmid pLuc-GT4 encodes Pho-

tinus luciferase under the control of the rat glut4 promoter.

Using the QuickChange mutagenesis kit (Stratagene), we

mutated the MEF2 responsive element in position � 466

to � 457 in the rat glut4 promoter from CTAAAAATAG to

CTAGCCTTAG to generate the plasmid pLuc-GT4-MEF2-

mut. Andrew Thorburn kindly provided the pSRa-

MEK6DD plasmid encoding a constitutively active mutant

of MEK6 [21]. All plasmids were cotransfected with a

plasmid encoding Renilla luciferase under the control of

the SV40 promoter (pRL-SV40, Promega). Transient trans-

fection of NRC was performed using the calcium phos-

phate precipitation method [19]. Transfection mixes

contained 1 Ag of pLuc-GT4, 1 Ag of pRL-SV40 and 1

Ag of the selected expression plasmid or the empty vector.

Photinus and Renilla luciferase activity was measured 2

days after transfection with the Dual Luciferase Reporter

kit (Promega).

2.5. Immunoblot analysis

ARC in one 6-cm dish were extracted in 200 Al RIPA
(150 mM NaCl, 9.1 mM Na2HPO4, 1.7 mM NaH2PO4, pH

7.4, 1:100 protease inhibitor cocktail (Sigma P8340), 5

mM NaF, 10 mM Na2h-glycerophosphate, 10 mM Na2par-

anitrophenyl phosphate, 1 mM NaVO3). Extracts were

clarified by centrifugation (12,000 rpm for 5V) and super-

natants were used for SDS-PAGE and immunoblotting

[22]. Antibodies against phosphorylated and non-phos-

phorylated forms of ERK1/2, Akt and p38 MAPK were

from Cell Signalling Technologies (Beverly, MA). A rabbit

polyclonal antibody against GLUT1 was obtained from

Diagnostic International (Schriesheim, Germany). A mono-

clonal anti-GLUT4 antibody (clone 1F8) was obtained

from ANAWA (Wangen, Switzerland). Anti-rabbit and

anti-mouse IgG HRP-conjugated antibodies were from

Sigma. Blots were revealed by chemiluminescence (ECL,

Amersham). Quantitative analysis of bands on films was

done by laser densitometry (ImageQuant 3.3, Molecular

Dynamics).

2.6. RT-PCR analysis

ARC or NRC in one 6-cm dish were extracted in 1 ml

TRIZOL (Life Technologies) and total RNA was purified



Fig. 1. Changes in cell phenotype induced by FGF-2 and IGF-1. ARC were

cultured for 7 days in medium containing the vehicle (A, D), 25 ng/ml FGF-

2 (B, E) or 500 ng/ml IGF-1 (C, F). ARC were fixed and stained for F-actin

(red) and a-sarcomeric actinin (green) in panels A, B and C or for ANF

(red) and a-smooth muscle actin (green) in panels D, E and F. Note that in

panel C, because of the great difference in cell thickness, the image of each

cell was processed separately.
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according to the manufacturer’s protocol. Two kinds of RT-

PCR analysis were performed. In the first approach, 125 ng

total RNAwas used for reverse transcription and subsequent

polymerase chain reaction using the OneStep RT-PCR kit

(Qiagen). Primers capable to coamplify GLUT1 and

GLUT4 cDNAs were used (Table 1), which allowed resolv-

ing their respective products on the basis of a 12-base-pair

size difference [23]. Cycling conditions were as follows: 30

min at 50 jC for reverse transcription, 15 min at 95 jC for

reverse transcriptase inactivation and polymerase activation

followed by 25 cycles of 30 s at 94 jC, 1 min at 55 jC and 1

min at 72 jC. After a final extension step of 10 min at 72

jC, PCR products were resolved by electrophoresis on 10%

polyacrylamide gels in 1X TBE (89 mM Tris–borate, 2 mM

EDTA) buffer. The gels were stained with ethidium bromide

and a fluorescent image acquired with a digital camera.

Quantitative analysis of bands on gel was done with the

NIH Image 1.62 software.

For quantitative real-time RT-PCR, total RNA (100 ng)

was treated with DNase I (Invitrogen) and reverse tran-

scribed with the SuperScript II reverse transcriptase (Invi-

trogen). After degradation of the RNA with RNase H

(Invitrogen), the cDNA was used for real-time polymerase

chain reactions set up with the iQ Supermix kit (Bio-Rad)

and run on an iCycler thermal cycler (Bio-Rad). Cycling

conditions were as follows: 2.5 min at 95 jC for polymer-

ase activation followed by 45 cycles of 15 s at 95 jC and 1

min at 60 jC. Detection of PCR products, based on the

TaqMan technology, was performed by the iCycler iQ

detection and software system (Bio-Rad). Primers and

probes sequences are given in Table 1. The expression of

GLUT4 was normalized for that of the housekeeping gene

cyclophilin.

2.7. Immunofluorescence

ARC cultured on chamber slides were fixed with 4%

paraformaldehyde in PBS and permeabilized with 0.3%

Triton X-100 in PBS. Primary antibodies used were directed

against sarcomeric a-actinin (Sigma A7811), a-smooth
Table 1

RT-PCR primers and probes

Duplex RT-PCR [23]

GLUT1/4

Quantitative real-time RT-PCR [28]

GLUT1

GLUT4

Cyclophilin
muscle actin (Sigma A2547), ANF (Peninsula Laboratories

T-4015) or MEF2 (Santa Cruz Biotechnology sc-313).

Fluorophore-conjugated secondary antibodies were anti-

mouse IgG-FITC (Sigma F5262) and anti-rabbit IgG-rho-

damine (Chemicon AQ132R). All antibodies were diluted in

PBS containing 1.5% non-immune goat serum. Counter-

staining for F-actin was obtained with either rhodamine-

phalloidin (Molecular Probes, Eugene, OR) or FITC-phal-
Forward: 5V-GTCATCAACGCCCC(A/C)CAGAA-3V
Reverse: 5V-GAGAAGATGGCCACGGAGAGAG-3V

Forward: 5V-CATCGTCGTTGGGATCCTTA-3V
Reverse: 5V-GAGACAGTAGAGGCCACAAGTCT-3V
Probe: 5V-FAM-AGGTGTTCGGCTTAGACTCCATCATGG-TAMRA-3V
Forward: 5V-CCCCCGATACCTCTACAT-3V
Reverse: 5V-GCATCAGACACATCAGCCCAG-3V
Probe: 5V-FAM-CTGCCCGAAAGAGTCTAAAGCGCCT-TAMRA-3V
Forward: 5V-CTGATGGCGAGCCCTTG-3V
Reverse: 5V-TCTGCTGTCTTTGGAACTTTGTC-3V
Probe: 5V-FAM-CGCGTCTGCTTCGAGCTGTTTGCA-TAMRA-3V
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loidin (Sigma). DNA was stained with DAPI (Molecular

Probes). Slides were mounted with VectaShield (Vector

Laboratories) and examined with a Carl Zeiss Axiophot I

microscope equipped with an Axiocam color CCD camera

(Carl Zeiss). Images were acquired with the AxioVision

software (Carl Zeiss) and processed with Photoshop 3.0.5

(Adobe Systems).

2.8. Electrophoretic mobility shit assay (EMSA)

For nuclear proteins extraction, ARC in 10-cm dishes

were scraped in 2 ml ice-cold hypotonic buffer (20 mM

HEPES pH 7.5, 10 AM Na2MoO4, 0.1 AM EDTA,

protease and phosphatase inhibitors) and left on ice for

10 min. Igepal CA-630 was then added to a final

concentration of 0.5% v/v and the extract was spun at

13000 rpm for 30 s to pellet the nuclei. The pellet was
Fig. 2. ARC in primary culture spontaneously upregulate GLUT1 and downregul

vivo ARC or ARC after 2 and 7 days in primary culture. (B) Quantitative analysis

ARC after 2 and 7 days in primary culture. (C) Representative RT-PCR of GLUT1

culture. (D) GLUT4/GLUT1 mRNA molar ratio in ex vivo ARC or ARC after 2 an

by quantitative RT-PCR and expressed as percent of the value in ex vivo ARC. R
##p< 0.01; ###p< 0.001 vs. day 2.
resuspended in 40 Al complete lysis buffer (20 mM

HEPES pH 7.5, 400 mM NaCl, 20% glycerol, 1 mM

DTT, 10 AM Na2MoO4, 0.1 AM EDTA, protease and

phosphatase inhibitors) and kept on ice for 30 min with

intermittent shaking. The nuclear extract was then spun at

13,000 rpm for 10 min and the supernatant containing

nuclear proteins saved and stored at � 80j C until EMSA

was performed.

The rat glut4 promoter MEF2 probe was constructed by

annealing shifted oligonucleotides (sense 5V-GCCTAACG-
TGGGAGCTAAAAATAGCCATTCCGG-3V; antisense 3V-
TGCACCCTCGATTTTTATC GGTAAGGCCCATG-5V;
MEF2 consensus sequence underlined) and filling in by

the Klenow reaction in the presence of [a-32P]CTP [24].

Nuclear proteins (15 Ag) were incubated with 50,000 cpm

MEF2 probe in complete lysis buffer for 30 min at room

temperature in presence or absence of a 250-fold excess of
ate GLUT4. (A) Representative immunoblots of GLUT1 and GLUT4 in ex

of GLUT1 and GLUT4 proteins expression in ex vivo ARC (set at 100%) or

and GLUT4 mRNA in ex vivo ARC or ARC after 2 and 7 days in primary

d 7 days in primary culture. (E) Expression of GLUT4 mRNAwas measured

esults are meanF S.E.M. *p< 0.05; **p< 0.01; ***p< 0.001 vs. ex vivo.
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unlabeled probe and the complexes were resolved on 5%

non denaturing polyacrylamide gels [24].

2.9. Statistics

Statistical analyses were performed with the Prism4

software (GraphPad Softwares). Multiple groups were

compared by the Kruskal–Wallis test, followed by Dunn’s

post-hoc tests for pair wise comparison. When two treat-

ments were combined (i.e. agonist and inhibitor) results

were analyzed by two-way ANOVA followed by Bonfer-

roni’s post-hoc test. The number of experiments or cells

analyzed is indicated at the foot of each bar in bar graphs.

Differences were considered significant when p was less

than 0.05.
Fig. 3. FGF-2 and IGF-1 upregulate GLUT4 expression. ARC were plated

in medium containing 25 ng/ml FGF-2, 50 ng/ml IGF-1, 500 ng/ml IGF-1

or the vehicle. After indicated times, total RNA and proteins were extracted.

(A) Expression of GLUT4 mRNA was measured by quantitative RT-PCR

and expressed as percent of the value in ex vivo ARC.

(B) Expression of the GLUT4 protein was determined by immunobloting.

Results are meanF S.E.M. *p< 0.05; **p< 0.01; ***p< 0.001 vs. control.

Insets show representative Western blots.
3. Results

3.1. Spontaneous modification of ARC phenotype and effect

of FGF-2 and IGF-1

Two days following plating of the ARC, cells were

either rod-shaped or rounded up by hypercontraction, with

only minimal cell spreading. No differences were apparent

between control and growth factor-treated ARC. After 7

days in culture, ARC had started to disassemble the

contractile apparatus and spread onto the substratum. A

‘‘myofibrillar ball’’ persisted in the perinuclear region (Fig.

1A). To study the influence of growth factors that have

been shown to promote or attenuate cellular features of

dedifferentiation [15], ARC were cultured in medium

containing, respectively, FGF-2 or IGF-1. In the presence

of FGF-2, ARC were much larger, with myofibrils restrict-

ed to a central perinuclear region (Fig. 1B). Fig. 1C shows

two ARC cultured with 500 ng/ml IGF-1. One cell is fully

spread and shows extensive myofibrillar organization,

while the other essentially shows a ‘‘myofibrillar ball’’.

In contrast to control and IGF-1-treated ARC (Fig. 1D,F),

ARC exposed to FGF-2 exhibited expression of the

markers of myocyte hypertrophy and dedifferentiation

ANF and a-smooth muscle actin. ANF was visible in

perinuclear granules (rhodamine label), while a-smooth

muscle actin was seen in stress fiber-like structures (FITC

label).

3.2. GLUT1 and GLUT4 expression during spontaneous

modification of phenotype of ARC

ARC in long-term culture exhibited spontaneous mod-

ifications of expression of the glucose transporter proteins

GLUT1 and GLUT4. After 2 days in primary culture, the

protein content of GLUT1 was markedly increased com-

pared with the value measured in ARC immediately after

isolation (thereafter referred to as ex vivo ARC). Concom-

itantly, the protein content of GLUT4 was decreased (Fig.
2A,B). Coamplification of GLUT1 and GLUT4 mRNA by

RT-PCR using a common set of primers revealed a marked

drop in the GLUT4/GLUT1 mRNA molar ratio in ARC

after 2 days in primary culture as compared to ex vivo ARC

(Fig. 2C,D). Seven days after isolation, GLUT1 protein

expression was further increased, while expression of

GLUT4 was restored to levels even above ex vivo levels.

Consistent with restoration of GLUT4 expression, the

GLUT4/GLUT1 mRNA molar ratio also increased and

reached almost ex vivo levels. Expression of GLUT4

mRNA as measured by quantitative RT-PCR followed a

pattern parallel to that of the GLUT4/GLUT1 mRNA ratio

(Fig. 2E), whereas expression of GLUT1 mRNA did not

change significantly after 2 days and decreased slightly

after 7 days.
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3.3. Regulation of GLUT4 expression by FGF-2 and IGF-1

IGF-1 induced a marked increase in GLUT4 protein

expression on both day 2 and day 7. In contrast, FGF2 only

slightly increased the expression of the GLUT4 protein

(Fig. 3B).

Changes at the level of protein expression were paral-

leled by alterations of the GLUT4 mRNA expression. After

2 days, treatment with FGF-2 did not increase the level of

the GLUT4 mRNA, whereas IGF-1 increased the GLUT4

mRNA (Fig. 3A). After 7 days of treatment with IGF-1, the

expression of GLUT4 mRNA was increased more than

twofold. Again, FGF-2 had no effect.

3.4. Signaling pathways involved in regulation of GLUT4

expression

To determine whether signaling pathways were activated

by the isolation procedure itself, measurements in extracts of

hearts obtained immediately after surgical excision (thereaf-

ter referred to as native hearts) were compared to ex vivo

ARC and to ARC kept in culture for 4, 24 and 48 h. An

obvious limitation of this approach is the comparison of a

whole tissue homogenate of native hearts, containing several

cell types, with a 95% pure ARC population. The ERK1/2

MAP kinase and the PI3K pathways were examined, because

these signaling cascades are major determinants of GLUT1

[25] and GLUT4 expression [26,27]. In addition, we mea-

sured activation of the p38 MAPK cascade, which was likely

to be activated in response to the stress of isolation.

Activity of the PI3K pathway, estimated from the

phosphorylation level of the downstream kinase Akt on

C. Montessuit et al. / Cardiova
Fig. 4. Isolation and growth factors activate MAP kinase pathways. (A) Isolatio

immunoblots showing activated (phosphorylated) and total ERK1/2, p38 MAPK a

and 48 h. (B) Growth factors activate ERK1/2, p38 MAPK and Akt. Representativ

MAPK and Akt in ARC treated with FGF-2 or IGF-1 for 10 min immediately af
Ser-473, was not stimulated by isolation of the ARC, as the

variations in pSer473-Akt observed between native hearts

and ex vivo ARC paralleled the variations in total Akt

protein. In fact, quantitative analysis indicated that activity

of the PI3K pathway was reduced upon ARC isolation

(Fig. 4A). In contrast, both the ERK1/2 and the p38 MAP

kinase pathways showed marked activation immediately

after isolation. Quantitative analysis of ERK1/2 and p38

MAPK activities revealed a 14- and 9-fold activation upon

isolation, respectively. p38 MAPK activity returned to

baseline within 2 days, whereas ERK1/2 activity remained

elevated.

FGF-2 and IGF-1 elicited a further increase of activation

of ERK1/2 and p38 MAPK 10 min after plating (Fig. 4B).

In addition, IGF-1, but not FGF-2, strongly activated Akt,

which had been inactivated upon isolation.

To elucidate the role of the role of ERK1/2, and p38

MAPK on growth factor-stimulated increase of GLUT4,

ARC were cultured for 2 days with medium containing

growth factors and selective inhibitors. Growth factor stim-

ulation in the presence of an inhibitor was expressed relative

to incubation with the inhibitor alone. It is of note that

U0126 increased basal expression GLUT4 by 294%, while

the p38 MAPK inhibitor SB203580 slightly increased basal

GLUT4 expression. Fig. 5 depicts the effects of inhibitors

on GLUT4 expression. U0126 did not significantly alter

GLUT4 expression in ARC exposed to either FGF-2 or

IGF-1. In contrast, SB203580 completely abolished the

pronounced overexpression of GLUT4 induced by IGF-1

after both 2 (A) and 7 (B) days. Thus, increased protein

expression of GLUT4 in response to IGF-1 seems to be

largely mediated by p38 MAPK.
n activates ERK1/2 and p38 MAPK, but deactivates Akt. Representative

nd Akt in native heart extracts, ex vivo ARC and ARC in culture for 4, 24

e immunoblots showing activated (phosphorylated) and total ERK1/2, p38

ter isolation.



Fig. 5. Activation of the p38 MAPK pathway mediates upregulation of

GLUT4. Quantitative analysis of GLUT4 protein expression in ARC after 2

days (A) and 7 days (B) in primary culture in presence of 0.1% DMSO,

U0126 (U; 10 AM) or SB203580 (SB; 10 AM). ARC were also incubated

with FGF-2, IGF-1 or no agonist. For each inhibitor, the results were

normalized for expression in absence of agonist. Results are meanF S.E.M.

**p< 0.01 vs. no agonist; ##p< 0.01 vs. value with the same agonist but no

inhibitor. Insets show representative Western Blots.

 

Fig. 6. Activation of the glut4 promoter by the p38 MAPK pathways. (A)

Quantitative analysis of GLUT4 mRNA expression in neonatal rat

cardiomyocytes (NRC) in primary culture in presence of 0.1% DMSO or

SB203580 (SB; 10 AM). ARC were also incubated with FGF-2, IGF-1 or

no agonist. For each inhibitor, the results were normalized for expression in

absence of agonist. (B) Relative luciferase expression driven by either the

glut4 promoter was determined in NRC cotransfected with expression

plasmids encoding activated MEK1 (DN3MEK1; A), activated MEK6

(MEK6DD, B) or the empty respective vector plasmid. NRC were treated

with the MEK1 inhibitor U0126 (10 AM), the p38 MAPK inhibitor

SB203580 (10 AM) or the vehicle DMSO. Results are meanF S.E.M.

***p< 0.001 vs. empty vector. #p< 0.05; ###p< 0.001 vs. NRC expressing

the same activated MEK in absence of inhibitor.
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3.5. Effects of ERK1/2 and p38 MAPK on transcriptional

activation of the GLUT4 promoter in neonatal rat

cardiomyocytes

The effects of activation of ERK1/2 and p38 MAPK on

transcriptional activity of the glut4 promoters were inves-

tigated in neonatal rat cardiomyocytes (NRC). We resorted

to NRC for these experiments because ARC are not

amenable to conventional transfection techniques. As in

ARC, IGF-1 increased the expression of the GLUT4

mRNA in NRC (Fig. 6A) in a p38 MAPK-dependent

manner.

Transfection of the active ERK1/2 mutant DN3MEK1

did not significantly alter glut4 promoter activity (Fig. 6B).

In contrast, activation of p38 MAPK by MEK6DD elicited

robust stimulation of glut4 promoter activity, which was

entirely blocked by SB203580 (Fig. 6C). Thus, p38 MAPK,

but not ERK1/2, seems to be capable of stimulating glut4

promoter activity.



Fig. 7. MEF2 activation in ARC treated with growth factors. Fixed and permeabilized ARC were stained with anti-a-actinin antibody (green), DAPI (blue) and

anti-MEF2 antibody (red). Nuclei were counted as positive if the MEF2 staining was evident against cytoplasmic background. (A) Example of an ARC with

one MEF2-negative and one MEF2-positive nucleus. (B) Proportions of MEF2-positive nuclei in ARC treated for 2 days with 50 ng/ml IGF-1, 500 ng/ml IGF-

1 or the vehicle in the presence or absence of the p38 MAPK inhibitor SB203580 (10 AM). Error bars indicate the 95% confidence interval of the proportion.

**p< 0.01; ***p< 0.001 for IGF-1 treatment vs. control. #p< 0.05 for SB203580 treatment vs. no inhibitor. (C) Representative electrophoretic mobility shift

assay showing a single specific MEF2 complex, identified by competition with excess cold probe and by supershift with an anti-MEF2 antibody. (D)

Quantitation of MEF2 complexes in nuclear extracts from ARC treated with 50 ng/ml IGF-1, 500 ng/ml IGF-1 or the vehicle in the presence or absence of the

p38 MAPK inhibitor SB203580 (10 AM). Inset shows a representative experiment. *p< 0.05, **p< 0.01 for IGF-1 treatment vs. vehicle. #p< 0.05 for

SB203580 treatment vs. DMSO.
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3.6. Role of MEF2 in the regulation of GLUT4 expression

We tested the hypothesis that, downstream of p38

MAPK, the transcription factor MEF2 mediated the over-

expression of GLUT4 in response to IGF-1. Nuclear reten-
tion of MEF2 in fixed permeabilized ARC was used as an

index of increased DNA affinity. The percentage of MEF2-

positive nuclei (i.e. MEF2 staining showing up in the

nucleus against cytoplasmic background, Fig. 7A) was

low in control ARC after 2 days (11% of MEF2-positive



 

Fig. 8. Activation of the glut4 promoter by the p38 MAPK pathway is

MEF2-dependent. Relative luciferase expression driven by either the wild-

type glut4 promoter or the glut4 promoter mutated at the MEF2 binding site

(MEF2mut) was determined in NRC cotransfected with an expression

plasmid encoding activated MEK6DD or the empty vector plasmid. Results

are meanF S.E.M. ***p< 0.001 vs. empty vector. #p< 0.05; ##p< 0.01;
###p< 0.001 MEF2mut vs. wild-type glut4 promoter.
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nuclei, 95% confidence interval 8–16%, n = 212), but

increased after 7 days in parallel with reexpression of

GLUT4 (39% of MEF2-positive nuclei, 95% confidence

interval 32–47%, n = 166). Both dosages of IGF-1 increased

the proportion of MEF2-positive nuclei, an effect that was

blunted by inhibition of p38 MAPK activity with SB20358

(Fig. 7B). Electrophoretic mobility shift assays using the

MEF2 consensus sequence from the rat glut4 promoter

showed a single specific complex of ARC nuclear proteins

with the glut4 MEF2 probe, identified by competition with

excess cold probe and by supershift with an anti-MEF2

antibody (Fig. 7C). The intensity of the MEF2 complex was

greater in nuclear extracts from IGF-1-treated ARC; again,

inhibition of p38 MAPK activity reduced binding ARC

nuclear proteins to the glut4 MEF2 probe (Fig. 7D).

To further confirm the importance of MEF2 for p38

MAPK-stimulated GLUT4 transcription, we mutated the

MEF2 consensus sequence in the reporter plasmid pLuc-

GT4 used in transient transfection experiments in NRC.

Basal transcription from the mutated glut4 promoter was

markedly reduced as compared with the wild-type promoter

(Fig. 8). In addition, transcription from the mutated glut4

promoter was totally insensitive to expression of MEK6DD,

indicating that MEF2 binding activity is required for trans-

duction of the p38 MAPK signals to the glut4 promoter.
4. Discussion

Cardiac hypertrophy and failure is associated with down-

regulation of GLUT4, which potentially contributes to

altered myocardial structure, metabolism and function

[11,12]. The results of the present study in ARC indicate

that IGF-1 can restore GLUT4 expression through p38

MAPK-mediated activation of MEF2.
4.1. ARC differentiation and GLUT expression

One of the aims of this study was to examine the

relationship between the state of differentiation of cardiac

myocytes and the relative expression of GLUT isoforms,

taking advantage of the dedifferentiation–redifferentiation

ARC model and of the possibility to manipulate the degree

of differentiation. The results demonstrated that isolation of

ARC in itself elicited not only morphological dedifferenti-

ation of the myocytes, but also corresponding changes in the

mRNA and protein expression of GLUT isoforms. Freshly

isolated (ex vivo) ARC had a GLUT4/GLUT1 mRNA

molar ratio of 4.8, a value similar to that reported for native

cardiac tissue (3.8) [23]. After 2 days in primary culture, this

ratio had dropped to 0.65, a value below that reported for

neonatal rat cardiac myocytes (0.84) [25]. During the

subsequent redifferentiation process, GLUT4 protein ex-

pression was increased after 7 days and the GLUT4/GLUT1

mRNA molar ratio was reaugmented to 2.7. Concomitantly

with the effects of FGF-2 and IGF-1 on markers of dedif-

ferentiation such as ANF, a-smooth muscle-actin and myo-

fibrillar organization [14–16], IGF-1 more potently than

FGF-2 restored expression of GLUT4 towards ex vivo

values. This suggests that the GLUT isoform expression

pattern may provide an index of differentiation of cardiac

myocytes. Indeed, similar dysregulation of glucose trans-

porters expression were observed in pathological conditions

challenging cardiac myocytes differentiation such as hyper-

trophy, unloading [28] or failure [9]. The reason why the

GLUT1 protein expression increased whereas the GLUT1

mRNA remained stable or even slightly decreased remains

unknown.

4.2. Signal transduction and regulation of GLUT expression

The marked upregulation of GLUT4 observed in ARC in

response to IGF-1 was completely abolished by the p38

MAPK inhibitor SB203580. This strongly suggests that p38

MAPK is the main effector of GLUT4 upregulation in ARC

in primary culture. Consistent with the effects of inhibition

of ERK1/2 and p38 MAP kinases on GLUT4 expression in

ARC, transfection experiments in NCR indicated that p38

MAPK but not ERK1/2 activate transcription from the

glut4 promoter. Such a positive regulation of GLUT4 by

p38 MAPK has to the best of our knowledge not been

reported. It should be emphasized that FGF-2 and IGF-1

activated p38 MAPK to a similar extent, while the pro-

nounced upregulation of GLUT4 was observed only in the

presence of IGF-1, and only to a small extent in the

presence of FGF-2.

We used a comparatively high dose of IGF-1 (500 ng/ml)

based on previous studies examining the differential effects

of FGF-2 and IGF-1 in the ARC model [15]. A potential

concern with such a high dose of IGF-1 is activation of the

insulin receptor leading to effects that are not specific for

IGF-1. We obtained results that were almost identical when
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we used a 10-fold lower dose of IGF-1 (50 ng/ml, Fig. 3).

We do not believe that activation of the insulin receptor

played a significant role in our observations as even the high

dose of IGF-1 (500 ng/ml or ca. 66 nM) was below the

estimated Kd for activation of the insulin receptor by IGF-1

(100–500 nM) [29].

Transcription factors of the Myocyte Enhancer Factor 2

family are required for expression of GLUT4 in adipocytes

and both heart and skeletal muscle [30,31]. MEF2 is known

to be activated by p38 MAPK [32]. Our results clearly

indicate that IGF-1 activated MEF2 in a p38 MAPK-

dependent manner and that MEF2 activation was required

for increased expression of GLUT4 in response to IGF-1.

More nuclei were MEF2-positive in IGF-1-treated ARC,

which indirectly suggests increased affinity of MEF2 for

DNA, preventing diffusion of MEF2 out of the nuclei of

fixed and permeabilized cells. A similar interpretation was

proposed for the glucocorticoid receptor [33]. This conclu-

sion was confirmed by more specific electrophoretic mobil-

ity shift assays measuring the binding of ARC nuclear

proteins to a MEF2 consensus sequence derived from the

rat glut4 promoter. An interesting observation in this context

is that TGF-h inhibits differentiation of myogenic cells

through translocation of MEF2 from the nucleus to the

cytoplasm [34]. It may be speculated that the mechanism(s)

that triggered dedifferentiation of ARC similarly induced

translocation of MEF2 to the cytoplasm.
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