25 research outputs found

    Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    Get PDF
    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive

    Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability

    Get PDF
    Lysosomes, as primary degradative organelles, are the end-point of different converging pathways including macroautophagy. To date, lysosome degradative function has been mainly studied in interphase cells, while their role during mitosis remains controversial. Mitosis dictates the faithful transmission of genetic material among generations, and perturbations of mitotic division lead to chromosomal instability, a hallmark of cancer. Heretofore, correct mitotic progression relies on the orchestrated degradation of mitotic factors, which was mainly attributed to ubiquitin-triggered proteasome-dependent degradation. Here, we show that mitotic transition does not only rely on proteasome-dependent degradation, as impairment of lysosomes increases mitotic timing and leads to mitotic errors, thus promoting chromosomal instability. Furthermore, we identified several putative lysosomal targets in mitotic cells. Among them, WAPL, a cohesin regulatory protein, emerged as a novel SQSTM1-interacting protein for targeted lysosomal degradation. Finally, we characterized an atypical nuclear phenotype, the toroidal nucleus, as a novel biomarker for genotoxic screenings. Our results establish lysosome-dependent degradation as an essential event to prevent chromosomal instability

    Phosphofructokinases Axis Controls Glucose-Dependent mTORC1 Activation Driven by E2F1.

    Get PDF
    Cancer cells rely on mTORC1 activity to coordinate mitogenic signaling with nutrients availability for growth. Based on the metabolic function of E2F1, we hypothesize that glucose catabolism driven by E2F1 could participate on mTORC1 activation. Here, we demonstrate that glucose potentiates E2F1-induced mTORC1 activation by promoting mTORC1 translocation to lysosomes, a process that occurs independently of AMPK activation. We showed that E2F1 regulates glucose metabolism by increasing aerobic glycolysis and identified the PFKFB3 regulatory enzyme as an E2F1-regulated gene important for mTORC1 activation. Furthermore, PFKFB3 and PFK1 were found associated to lysosomes and we demonstrated that modulation of PFKFB3 activity, either by substrate accessibility or expression, regulates the translocation of mTORC1 to lysosomes by direct interaction with Rag B and subsequent mTORC1 activity. Our results support a model whereby a glycolytic metabolon containing phosphofructokinases transiently interacts with the lysosome acting as a sensor platform for glucose catabolism toward mTORC1 activity

    Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation

    Get PDF
    BACKGROUND: Mitochondria are more than just the powerhouse of cells; they dictate if a cell dies or survives. Mitochondria are dynamic organelles that constantly undergo fusion and fission in response to environmental conditions. We showed previously that mitochondria of cells in a low oxygen environment (hypoxia) hyperfuse to form enlarged or highly interconnected networks with enhanced metabolic efficacy and resistance to apoptosis. Modifications to the appearance and metabolic capacity of mitochondria have been reported in cancer. However, the precise mechanisms regulating mitochondrial dynamics and metabolism in cancer are unknown. Since hypoxia plays a role in the generation of these abnormal mitochondria, we questioned if it modulates mitochondrial function. The mitochondrial outer-membrane voltage-dependent anion channel 1 (VDAC1) is at center stage in regulating metabolism and apoptosis. We demonstrated previously that VDAC1 was post-translationally C-terminal cleaved not only in various hypoxic cancer cells but also in tumor tissues of patients with lung adenocarcinomas. Cells with enlarged mitochondria and cleaved VDAC1 were also more resistant to chemotherapy-stimulated cell death than normoxic cancer cells. RESULTS: Transcriptome analysis of mouse embryonic fibroblasts (MEF) knocked out for Vdac1 highlighted alterations in not only cancer and inflammatory pathways but also in the activation of the hypoxia-inducible factor-1 (HIF-1) signaling pathway in normoxia. HIF-1α was stable in normoxia due to accumulation of reactive oxygen species (ROS), which decreased respiration and glycolysis and maintained basal apoptosis. However, in hypoxia, activation of extracellular signal-regulated kinase (ERK) in combination with maintenance of respiration and increased glycolysis counterbalanced the deleterious effects of enhanced ROS, thereby allowing Vdac1 (-/-) MEF to proliferate better than wild-type MEF in hypoxia. Allografts of RAS-transformed Vdac1 (-/-) MEF exhibited stabilization of both HIF-1α and HIF-2α, blood vessel destabilization, and a strong inflammatory response. Moreover, expression of Cdkn2a, a HIF-1-target and tumor suppressor gene, was markedly decreased. Consequently, RAS-transformed Vdac1 (-/-) MEF tumors grew faster than wild-type MEF tumors. CONCLUSIONS: Metabolic reprogramming in cancer cells may be regulated by VDAC1 through vascular destabilization and inflammation. These findings provide new perspectives into the understanding of VDAC1 in the function of mitochondria not only in cancer but also in inflammatory diseases

    Nucleotide depletion reveals the impaired ribosomebiogenesis checkpoint as a barrier against DNA damage

    Get PDF
    Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21‐mediated G1 arrest, whereas the DDR requires that cells enter S phase. Gradual inhibition of inosine monophosphate dehydrogenase (IMPDH), an enzyme required for de novo GMP synthesis, reveals a hierarchical organization of these two checkpoints. We find that the IRBC is the primary nucleotide sensor, but increased IMPDH inhibition leads to p21 degradation, compromising IRBC‐mediated G1 arrest and allowing S phase entry and DDR activation. Disruption of the IRBC alone is sufficient to elicit the DDR, which is strongly enhanced by IMPDH inhibition, suggesting that the IRBC acts as a barrier against genomic instability

    Young children's understanding of disabilities: the influence of development, context and cognition

    Get PDF
    Throughout Europe, educational support for children with disabilities has moved towards a model of inclusive education. Such policy changes mean that for all children there will be an increased likelihood of working with and encountering children with differing disabilities and difficulties. Previous research had indicated that children had poorly differentiated views of developmental differences. The present study investigated children?s representations of different disabilities. Seventy-nine 8-9 and 10-11 year old Greek children from an urban school and a rural school completed an attitudes toward school inclusion rating scale and a semi-structured interview. Responses to the attitude scale provided generally positive views of educational inclusion. However, children were less positive about activities that might directly reflect upon themselves. Children?s responses in the interviews indicated that they were developing rich representations of differences and diversities. Children had the greatest understanding of sensory and physical disabilities, followed by learning disabilities. There was limited knowledge of dyslexia and hyperactivity and no child was familiar with the term autism. Both groups of children identified a range of developmental difficulties, with older children being more aware of specific learning disabilities, their origin and impact. Results are discussed in terms of children?s developing knowledge systems and the implications for educational practices

    The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition

    Get PDF
    Altres ajuts: We thank CERCA Program/Generalitat de Catalunya for their institutional support. This work was also supported by the Fundació La Marató de TV3, grant number #20131610 (S.G.), the AECC-Junta de Barcelona (S.G.), the Fundación Científica de la AECC under grant GCB13131578DEÁ (O.M.T.), the Health and Science Departments of the Catalan Government (Gen-eralitat de Catalunya). C.O.-M. is a pre-doctoral fellow funded by the Basque Government (PRE_2013_1_1009).One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers

    Epigenetic loss of RNA‑methyltransferase NSUN5 in glioma targets ribosomes to drive stress adaptive translational program

    Get PDF
    Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    AMPK, hypoxic signaling and tumor metabolism

    No full text
    Les tumeurs solides sont souvent confrontĂ©es Ă  un environnement dĂ©ficient en oxygĂšne, dit hypoxique. Hypoxia-Inducible Factor 1 (HIF1) est le facteur de transcription clĂ© de l’adaptation cellulaire Ă  l’hypoxie, rĂ©gulant de nombreux gĂšnes impliquĂ©s dans l’angiogenĂšse, le mĂ©tabolisme cellulaire ou la rĂ©gulation du pH. Ma thĂšse s’articule en trois axes autour de HIF1 et de la reprogrammation mĂ©tabolique hypoxique. J’ai d’abord Ă©tudiĂ© Factor-Inhibiting HIF1 (FIH), l’un des deux senseurs d’oxygĂšne rĂ©gulant HIF1. Nous avons montrĂ© que FIH est essentiel dans le dĂ©veloppement tumoral en inhibant Ă  la fois l’activitĂ© transcriptionnelle de HIF1 et la voie p53-p21. J’ai ensuite Ă©tudiĂ© le « shift » du mĂ©tabolisme cellulaire vers la glycolyse induit par HIF1, gĂ©nĂ©rant une addiction pour le glucose. Nos travaux ont montrĂ© que paradoxalement, les cellules hypoxiques synthĂ©tisent du glycogĂšne via HIF1 constituant ainsi une rĂ©serve de glucose intracellulaire. Le glycogĂšne confĂšre alors une rĂ©sistance accrue des cellules tumorales suite Ă  une carence en glucose. Enfin, j’ai pu montrer que l’AMPK, « gardien de la balance Ă©nergĂ©tique », n’est pas nĂ©cessaire au maintien d’un niveau viable d’ATP suite Ă  l’inhibition de la glycolyse, via le blocage de l’export de lactate, mais exerce, un effet protecteur en absence de glucose. Cependant, l’inhibition conjointe du transporteur de lactate, MCT4, et de l’AMPK rĂ©duit fortement le dĂ©veloppement tumoral dans un modĂšle de xĂ©nogreffes chez la souris, suggĂ©rant un rĂŽle crucial de ces deux acteurs dans ce contexte. L’ensemble de ces travaux a permis d’identifier plusieurs cibles potentielles impliquĂ©es dans la plasticitĂ© mĂ©tabolique en hypoxie.Cells of solid tumors are often exposed to an environment deficient in oxygen, i.e. hypoxic. The Hypoxia-Inducible Factor-1 (HIF-1) is the major transcription factor involved in cellular adaptation to hypoxia. HIF-1 regulates a wide array of genes involved in angiogenesis, cellular metabolism or pH regulation. My thesis is organized into three axes around HIF-1 and metabolic reprogramming in hypoxia. I first studied Factor-Inhibiting HIF-1 (FIH), one of two oxygen sensors regulating HIF-1. We showed that FIH is essential for tumor development through inhibition of the HIF-1 transcriptional activity as well as through the suppression of the p53-p21 axis. I then studied the HIF-1-induced « shift » in cellular metabolism toward glycolysis, which generates a type of “glucose addiction”. We showed that paradoxically, tumor cells store glycogen in hypoxia through a HIF-1 dependant mechanism. Glycogen served as a reservoir of intracellular glucose, which allows hypoxic cells to survive periods of glucose starvation. Finally, I studied AMPK «the guardian of energy », and showed that surprisingly, this kinase is not necessary in maintaining a viable level of ATP when glycolysis is inhibited (by blockade of lactate export). However, as expected, AMPK protected cells during glucose starvation. Moreover, combined inhibition of the lactate transporter MCT4 and of AMPK reduced dramatically tumor development in a xenograft model, suggesting a crucial role for these two actors in the context of growth of tumor cells in a hostile environment. Taken together these results identified several potential drug targets involved in the metabolic plasticity of hypoxic cells

    AMPK, signalisation hypoxique et métabolisme tumoral

    Get PDF
    Cells of solid tumors are often exposed to an environment deficient in oxygen, i.e. hypoxic. The Hypoxia-Inducible Factor-1 (HIF-1) is the major transcription factor involved in cellular adaptation to hypoxia. HIF-1 regulates a wide array of genes involved in angiogenesis, cellular metabolism or pH regulation. My thesis is organized into three axes around HIF-1 and metabolic reprogramming in hypoxia. I first studied Factor-Inhibiting HIF-1 (FIH), one of two oxygen sensors regulating HIF-1. We showed that FIH is essential for tumor development through inhibition of the HIF-1 transcriptional activity as well as through the suppression of the p53-p21 axis. I then studied the HIF-1-induced « shift » in cellular metabolism toward glycolysis, which generates a type of “glucose addiction”. We showed that paradoxically, tumor cells store glycogen in hypoxia through a HIF-1 dependant mechanism. Glycogen served as a reservoir of intracellular glucose, which allows hypoxic cells to survive periods of glucose starvation. Finally, I studied AMPK «the guardian of energy », and showed that surprisingly, this kinase is not necessary in maintaining a viable level of ATP when glycolysis is inhibited (by blockade of lactate export). However, as expected, AMPK protected cells during glucose starvation. Moreover, combined inhibition of the lactate transporter MCT4 and of AMPK reduced dramatically tumor development in a xenograft model, suggesting a crucial role for these two actors in the context of growth of tumor cells in a hostile environment. Taken together these results identified several potential drug targets involved in the metabolic plasticity of hypoxic cells.Les tumeurs solides sont souvent confrontĂ©es Ă  un environnement dĂ©ficient en oxygĂšne, dit hypoxique. Hypoxia-Inducible Factor 1 (HIF1) est le facteur de transcription clĂ© de l’adaptation cellulaire Ă  l’hypoxie, rĂ©gulant de nombreux gĂšnes impliquĂ©s dans l’angiogenĂšse, le mĂ©tabolisme cellulaire ou la rĂ©gulation du pH. Ma thĂšse s’articule en trois axes autour de HIF1 et de la reprogrammation mĂ©tabolique hypoxique. J’ai d’abord Ă©tudiĂ© Factor-Inhibiting HIF1 (FIH), l’un des deux senseurs d’oxygĂšne rĂ©gulant HIF1. Nous avons montrĂ© que FIH est essentiel dans le dĂ©veloppement tumoral en inhibant Ă  la fois l’activitĂ© transcriptionnelle de HIF1 et la voie p53-p21. J’ai ensuite Ă©tudiĂ© le « shift » du mĂ©tabolisme cellulaire vers la glycolyse induit par HIF1, gĂ©nĂ©rant une addiction pour le glucose. Nos travaux ont montrĂ© que paradoxalement, les cellules hypoxiques synthĂ©tisent du glycogĂšne via HIF1 constituant ainsi une rĂ©serve de glucose intracellulaire. Le glycogĂšne confĂšre alors une rĂ©sistance accrue des cellules tumorales suite Ă  une carence en glucose. Enfin, j’ai pu montrer que l’AMPK, « gardien de la balance Ă©nergĂ©tique », n’est pas nĂ©cessaire au maintien d’un niveau viable d’ATP suite Ă  l’inhibition de la glycolyse, via le blocage de l’export de lactate, mais exerce, un effet protecteur en absence de glucose. Cependant, l’inhibition conjointe du transporteur de lactate, MCT4, et de l’AMPK rĂ©duit fortement le dĂ©veloppement tumoral dans un modĂšle de xĂ©nogreffes chez la souris, suggĂ©rant un rĂŽle crucial de ces deux acteurs dans ce contexte. L’ensemble de ces travaux a permis d’identifier plusieurs cibles potentielles impliquĂ©es dans la plasticitĂ© mĂ©tabolique en hypoxie
    corecore