18 research outputs found
Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, ggammaa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic fieldFil: Medina, Maria Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: H.E.S. S. collaboration
Discovery of VHE emission towards the Carina arm region with the H.E.S.S. telescope array: HESS J1018-589
The Carina arm region, containing the supernova remnant SNR G284.3–1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6–5856 and the energetic pulsar PSR J1016–5857 and its nebula, has been observed with the H.E.S.S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1 TeV) γ-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE γ-ray emission. The new VHE source HESS J1018–589 shows a bright, point-like emission region positionally coincident with SNR G284.3–1.8 and 1FGL J1018.6–5856 and a diffuse extension towards the direction of PSR J1016–5857. A soft (Γ = 2.7 ± 0.5stat) photon index, with a differential flux at 1 TeV of N0 = (4.2 ± 1.1) × 10-13 TeV-1 cm-2 s-1 is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Γ = 2.9 ± 0.4stat and differential flux at 1 TeV of N0 = (6.8 ± 1.6) × 10-13 TeV-1 cm-2 s-1. This H.E.S.S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4–58564) with a photon index of Γ = 1.65 ± 0.08 in the center of SNR G284.3–1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n ≈ 0.5 cm-3 (2.9 kpc/d)2. The position of XMMU J101855.4–58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6–5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE γ-ray emission from HESS J1018–589 and the various potential counterparts in the Carina arm region
Discovery of VHE y-ray emission and multi-wavelength observations of the BL Lacertae object 1RXS J101015.9-311909
1RXS J101015.9 − 311909 is a galaxy located at a redshift of z = 0.14 hosting an active nucleus (called AGN) belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006 and 2010 with the H.E.S.S. instrument, an array of four imaging atmospheric Cherenkov telescopes. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9 − 311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1 standard deviations. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Γ = 3.08 ± 0.42stat ± 0.20sys. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission in the 100 MeV to 200 GeV energy range is significant at 8.3 standard deviations in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the atom telescope located at the H.E.S.S. site. Swift observations reveal an absorbed X-ray flux of F(0.3-7) keV = 1.04+0.04-0.05 × 10-11 erg cm-2 s-1 in the 0.3 − 7 keV range. Finally, all the available data are used to study the multi-wavelength properties of the source. The spectral energy distribution (SED) can be reproduced using a simple one-zone Synchrotron Self Compton (SSC) model with emission from a region with a Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These parameters are similar to those obtained for other sources of this type
Discovery of very high energy γ-ray emission from the BL Lacertae object PKS 0301-243 with H.E.S.S.
The active galactic nucleus PKS 0301−243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4σ. A hint of variability at the 2.5σ level is found. An integral flux I(E > 200GeV) = (3.3 ± 1.1stat ± 0.7syst) × 10−12 ph cm−2 s−1 and a photon index Γ = 4.6 ± 0.7stat ± 0.2syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301−243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL
H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A
Context: Puppis A is an interesting ~4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1−100 GeV) γ-rays. An analysis of the Fermi-LAT data has shown extended HE γ-ray emission with a 0.2−100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the γ-ray emission above 100 GeV.
Aims: Very-high-energy (VHE, E ≥ 0.1 TeV) γ-ray emission from Puppis A has been, for the first time, searched for with the High Energy Stereoscopic System (H.E.S.S.).
Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the direction and energy of the incident γ-rays in order to produce sky images and source spectra. The profile likelihood method is applied to find constraints on the existence of a potential break or cutoff in the photon spectrum.
Results: The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband γ-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT and H.E.S.S. measurements, the 99% confidence-level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations (age, size, radiative losses) on the particle acceleration mechanism, assumed to be continuing at present, can explain the lack of VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin (as observed in several other interacting SNRs, albeit at somewhat higher energies), owing to the interaction with dense and neutral material, in particular towards the NE regio
Constraints on an annihilation signal from a core of constant dark matter density around the Milky Way center with H.E.S.S.
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10−24 cm3/s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search regio
Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856
Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018–589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6–5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ2/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of HESS J1018–589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018–589 A is best fit with a power-law function with photon index Γ = 2.20 ± 0.14stat ± 0.2sys. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 ± 0.4) × 10-13 TeV-1 cm-2 s-1 at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of Nσ> 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ ≲ 1 at 300 GeV
Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S.
The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 parsecs of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10−26cm3s−1 in the W+W− channel for a DM particle mass of 1.5 TeV, and 2×10−26cm3s−1 in the τ+τ− channel for 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particle
Discovery of VHE -ray emission and multi-wavelength observations of the BL Lacertae object 1RXS J101015.9-311909
1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an
active nucleus belonging to the class of bright BL Lac objects. Observations at
high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide
insights into the origin of very energetic particles present in such sources
and the radiation processes at work. We report on results from VHE observations
performed between 2006-10 with H.E.S.S. H.E.S.S. data have been analysed with
enhanced analysis methods, making the detection of faint sources more
significant. VHE emission at a position coincident with 1RXS J101015.9-311909
is detected with H.E.S.S. for the first time. In a total good-quality livetime
of about 49 h, we measure 263 excess counts, corresponding to a significance of
7.1\sigma. The photon spectrum above 0.2 TeV can be described by a power-law
with a photon index of \Gamma\ = 3.08\pm0.42_{stat}\pm0.20_{sys}. The integral
flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no
significant variability over the time reported. In addition, public Fermi/LAT
data are analysed to search for high energy emission from the source. The
Fermi/LAT HE emission is significant at 8.3\sigma\ in the chosen 25-month
dataset. UV and X-ray contemporaneous observations with the Swift satellite in
May 2007 are also reported, together with optical observations performed with
the ATOM telescope located at the H.E.S.S. site. Swift observations reveal an
absorbed X-ray flux of F_{0.3-7 keV} = 1.04^{+0.04}_{-0.05} \times 10^{-11}
erg.cm^{-2}.s^{-1} in the 0.3-7 keV range. Finally, all the available data are
used to study the source's multi-wavelength properties. The SED can be
reproduced using a simple one-zone SSC model with emission from a region with a
Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These
parameters are similar to those obtained for other sources of this type.Comment: 10 pages, 7 figures, accepted for publication in Astronomy &
Astrophysic
Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster
In some galaxy clusters powerful AGN have blown bubbles with cluster scale
extent into the ambient medium. The main pressure support of these bubbles is
not known to date, but cosmic rays are a viable possibility. For such a
scenario copious gamma-ray emission is expected as a tracer of cosmic rays from
these systems. Hydra A, the closest galaxy cluster hosting a cluster scale AGN
outburst, located at a redshift of 0.0538, is investigated for being a
gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and
the Fermi Large Area Telescope (Fermi-LAT). Data obtained in 20.2 hours of
dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by
its usual all-sky scanning mode, have been analyzed to search for a gamma-ray
signal. No signal has been found in either data set. Upper limits on the
gamma-ray flux are derived and are compared to models. These are the first
limits on gamma-ray emission ever presented for galaxy clusters hosting cluster
scale AGN outbursts. The non-detection of Hydra A in gamma-rays has important
implications on the particle populations and physical conditions inside the
bubbles in this system. For the case of bubbles mainly supported by hadronic
cosmic rays, the most favorable scenario, that involves full mixing between
cosmic rays and embedding medium, can be excluded. However, hadronic cosmic
rays still remain a viable pressure support agent to sustain the bubbles
against the thermal pressure of the ambient medium. The largest population of
highly-energetic electrons which are relevant for inverse-Compton gamma-ray
production is found in the youngest inner lobes of Hydra A. The limit on the
inverse-Compton gamma-ray flux excludes a magnetic field below half of the
equipartition value of 16 muG in the inner lobes.Comment: 8 pages, 4 figures, accepted for publication in A&