50 research outputs found

    Identification of women at risk for developing postmenopausal osteoporosis with vertebral fractures: role of history and single photon absorptiometry

    Full text link
    Putative risk factors for the development of postmenopausal osteoporosis (PMO) with vertebral fractures were examined in a retrospective study of 663 postmenopausal white females aged 45-75 years (266 women with non-traumatic vertebral compression fractures (VF+), 134 non-fractured women from a general medicine clinic (controls) and 263 non-fractured women who were evaluated when they presented specifically for osteoporosis screening (VF-)). The VF+ women differed from control women in several respects. The VF+ group reported a higher prevalence of a positive family history of osteoporosis, and a higher prevalence of a history of medical or surgical conditions known to be independently associated with metabolic bone disease, had fewer children, were smaller (weight, height) and were slightly older. The two groups, VF+ and controls, did not differ with respect to cigarette smoking, alcohol consumption, exercise habits, menstrual or menopausal history, dietary intake of milk and cheese or in amount taking calcium supplements during pregnancy.The VF+ group also differed in certain respects from the VF- group. The VF+ group were smaller (weight, height) and were older. The VF+ group had lower cortical bone mass (measured by single photon absorptiometry of the non-dominant forearm) than either the control or VF- groups. The latter two groups did not differ from each other with respect to this measurement.These markers demonstrated limited sensitivity and specificity as estimated from a confirmatory data set, particularly for the historical and anthropometric variables. We conclude that an assessment of the risk of developing PMO with vertebral fractures cannot be based on the putative risk factors as measured in our study, but must be based on measurement of bone mass.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27770/1/0000164.pd

    Search For Exotic Tau-decays

    Get PDF
    The Crystal Ball detector at the Doris II storage ring at DESY was used to search for the exotic decay processes tau -> e gamma, tau -> e pi0, tau -> e eta. No signal was observed. We obtained the following 90% CL upper limits on the branching fractions:B(tau -> e gamma)< 2.0x10^(-4),B(tau -> e pi0) < 1.4x10^(-4),B(tau -> e eta) < 2.4x10^(-4)

    Myofilament Phosphorylation in Stem Cell Treated Diastolic Heart Failure

    No full text
    RationalePhosphorylation of sarcomeric proteins has been implicated in heart failure with preserved ejection fraction (HFpEF); such changes may contribute to diastolic dysfunction by altering contractility, cardiac stiffness, Ca2+-sensitivity, and mechanosensing. Treatment with cardiosphere-derived cells (CDCs) restores normal diastolic function, attenuates fibrosis and inflammation, and improves survival in a rat HFpEF model.ObjectivePhosphorylation changes that underlie HFpEF and those reversed by CDC therapy, with a focus on the sarcomeric subproteome were analyzed.Methods and resultsDahl salt-sensitive rats fed a high-salt diet, with echocardiographically verified diastolic dysfunction, were randomly assigned to either intracoronary CDCs or placebo. Dahl salt-sensitive rats receiving low salt diet served as controls. Protein and phosphorylated Ser, Thr, and Tyr residues from left ventricular tissue were quantified by mass spectrometry. HFpEF hearts exhibited extensive hyperphosphorylation with 98% of the 529 significantly changed phospho-sites increased compared with control. Of those, 39% were located within the sarcomeric subproteome, with a large group of proteins located or associated with the Z-disk. CDC treatment partially reverted the hyperphosphorylation, with 85% of the significantly altered 76 residues hypophosphorylated. Bioinformatic upstream analysis of the differentially phosphorylated protein residues revealed PKC as the dominant putative regulatory kinase. PKC isoform analysis indicated increases in PKC α, β, and δ concentration, whereas CDC treatment led to a reversion of PKCβ. Use of PKC isoform specific inhibition and overexpression of various PKC isoforms strongly suggests that PKCβ is the dominant kinase involved in hyperphosphorylation in HFpEF and is altered with CDC treatment.ConclusionsIncreased protein phosphorylation at the Z-disk is associated with diastolic dysfunction, with PKC isoforms driving most quantified phosphorylation changes. Because CDCs reverse the key abnormalities in HFpEF and selectively reverse PKCβ upregulation, PKCβ merits being classified as a potential therapeutic target in HFpEF, a disease notoriously refractory to medical intervention

    Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display

    No full text
    Abstract Background Extracellular vesicles (EVs) and exosomes are nano-sized, membrane-bound vesicles shed by most eukaryotic cells studied to date. EVs play key signaling roles in cellular development, cancer metastasis, immune modulation and tissue regeneration. Attempts to modify exosomes to increase their targeting efficiency to specific tissue types are still in their infancy. Here we describe an EV membrane anchoring platform termed “cloaking” to directly embed tissue-specific antibodies or homing peptides on EV membrane surfaces ex vivo for enhanced vesicle uptake in cells of interest. The cloaking system consists of three components: DMPE phospholipid membrane anchor, polyethylene glycol spacer and a conjugated streptavidin platform molecule, to which any biotinylated molecule can be coupled for EV decoration. Results We demonstrate the utility of membrane surface engineering and biodistribution tracking with this technology along with targeting EVs for enhanced uptake in cardiac fibroblasts, myoblasts and ischemic myocardium using combinations of fluorescent tags, tissue-targeting antibodies and homing peptide surface cloaks. We compare cloaking to a complementary approach, surface display, in which parental cells are engineered to secrete EVs with fusion surface targeting proteins. Conclusions EV targeting can be enhanced both by cloaking and by surface display; the former entails chemical modification of preformed EVs, while the latter requires genetic modification of the parent cells. Reduction to practice of the cloaking approach, using several different EV surface modifications to target distinct cells and tissues, supports the notion of cloaking as a platform technology

    TDO2‐augmented fibroblasts secrete EVs enriched in immunomodulatory Y‐derived small RNA

    No full text
    Abstract Mounting evidence implicates extracellular vesicles (EVs) factors as mediators of cell therapy. Cardiosphere‐derived cells are cardiac‐derived cells with tissue reparative capacity. Activation of a downstream target of wnt/β‐catenin signalling, tryptophan 2,3 dioxygenase (TDO2) renders therapeutically inert skin fibroblasts cardioprotective. Here, we investigate the mechanism by which concentrated conditioned media from TDO2‐augmented fibroblasts (TDO2‐CCM) exert cardioprotective effects. TDO2‐CCM is cardioprotective in a mouse model of MI compared to CCM from regular fibroblasts (HDF‐CCM). Transcriptomic analysis of cardiac tissue at 24 h demonstrates broad suppression of inflammatory and cell stress markers in animals given TDO2‐CCM compared to HDF‐CCM or vehicle. Sequencing analysis of TDO2‐EV RNA demonstrated abundance of a small Y‐derived small RNA dubbed ‘NT4’. Purification of TDO2‐EVs by size‐exclusion chromatography and RNAse protection assays demonstrated that NT4 is encapsulated inside EVs. Consistently with TDO2‐CCM, macrophages exposed to NT4 showed suppression of the inflammatory and cell stress mediators, particularly p21/cdkn1a. NT4‐depleted TDO2‐CCM resulted in diminished immunomodulatory capacity. Finally, administration of NT4 alone was cardioprotective in an acute model of myocardial infarction. Taken together, these findings elucidate the mechanism by which TDO2 augmentation mediates potency in secreted EVs through enrichment of NT4 which suppresses upstream cell stress mediators including p21/cdkn1a

    A comprehensive method for identification of suitable reference genes in extracellular vesicles

    No full text
    Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) is one of the most sensitive, economical and widely used methods for evaluating gene expression. However, the utility of this method continues to be undermined by a number of challenges including normalization using appropriate reference genes. The need to develop tailored and effective strategies is further underscored by the burgeoning field of extracellular vesicle (EV) biology. EVs contain unique signatures of small RNAs including microRNAs (miRs). In this study we develop and validate a comprehensive strategy for identifying highly stable reference genes in a therapeutically relevant cell type, cardiosphere-derived cells. Data were analysed using the four major approaches for reference gene evaluation: NormFinder, GeNorm, BestKeeper and the Delta Ct method. The weighted geometric mean of all of these methods was obtained for the final ranking. Analysis of RNA sequencing identified miR-101-3p, miR-23a-3p and a previously identified EV reference gene, miR-26a-5p. Analysis of a chip-based method (NanoString) identified miR-23a, miR-217 and miR-379 as stable candidates. RT-qPCR validation revealed that the mean of miR-23a-3p, miR-101-3p and miR-26a-5p was the most stable normalization strategy. Here, we demonstrate that a comprehensive approach of a diverse data set of conditions using multiple algorithms reliably identifies stable reference genes which will increase the utility of gene expression evaluation of therapeutically relevant EVs
    corecore