75 research outputs found

    Optimizing Hybrid Plate Fixation with a Locked, Oblique End Screw in Osteoporotic Fractures

    Get PDF
    Background The end screw in a fracture plate creates the greatest resistance to bending. For osteoporotic fractures treated with plates, there is some question as to the optimal screw insertion technique for the screw farthest from the fracture. A locked, oblique end screw was previously shown to increase resistance to periprosthetic fracture. It is unknown, however, how this end screw configuration would resist pullout when subjected to bending. Methods Narrow, low contact 3.5 mm locking compression plates with 6 and 12 holes were anchored to simulated bone material with material properties representing osteoporotic bone. Four configurations were evaluated for the end screw: perpendicular and angulated 30 degrees away from the fracture for both non-locked and locked screws (n=6 per group). The constructs were subjected to 3 point bending until the peak load and finally total construct failure was achieved. Results Peak force, stiffness, energy to peak load, and the failure mode of each construct were determined. All four 12-hole construct groups failed by gross plastic bending deformation of the plate at the fulcrum past a previously established clinically relevant limit for failure (15°). All 12-hole plate constructs failed at statistically higher loads and energy than any of the 6-hole plate constructs, with the exception of the 6-hole locked, oblique construct. Conclusion The locked, oblique end screw provides equivalent pull out strength for 3.5 mm low contact plates regardless of plate length. Combined with its resistance to periprosthetic fracture, this end screw configuration appears to be the best option for the construct integrity of hybrid plating for osteoporotic fractures. Clinical Relevance Osteoporotic fractures are challenging to treat. The current study and the existing literature show that resistance to both bending loads and refracture at the end of a plate are minimized with a locked screw angled away from the fracture

    Reforming Fiscal Institutions in Resource-Rich Arab Economies: Policy Proposals

    Get PDF
    This paper traces the evolution of fiscal institutions of Resource Rich Arab Economies (RRAEs) over time since their pre-oil days, through the discovery of oil to their build-up of oil exports. It then identifies challenges faced by RRAEs and variations in their severity among the different countries over time. Finally, it articulates specific policy reforms, which, if implemented successfully, could help to overcome these challenges. In some cases, however, these policy proposals may give rise to important trade-offs that will have to be evaluated carefully in individual cases

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Drying colloidal systems: laboratory models for a wide range of applications

    Get PDF
    The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link

    Reducing Fracture Risk Adjacent to a Plate With an Angulated Locked End Screw

    No full text
    Objectives: Locking screws often are used in the treatment of osteoporotic fractures. Studies show that locking screws can increase bone stresses at the plate end, which increases the possibility of peri-implant fracture. This study evaluates whether the technique used to insert the end screw is related to the fracture tolerance adjacent to the plate. Methods: Twelve groups of plate constructs were evaluated using a fibular diaphyseal surrogate with mechanical properties similar to osteoporotic bone. All inboard screws were nonlocked with only the end screw fixation differing among groups. The end screws were inserted either perpendicularly to the plate or at an angle of 30 degrees for 6- and 12-hole plates. For both orientations, the end screws were inserted nonlocked, locked, or by a locked overdrilling technique, resulting in 6 groups per plate length. The perpendicular nonlocked screws represented a control group. The constructs were tested to failure in 4-point bending to determine peak load, failure energy, and stiffness. Results: All constructs failed by peri-implant fracture along a plane through the 2 cortical holes of the end screw. Compared with the control group, an angulated locked screw at the plate end significantly increased the peak bending moment and energy required to produce a fracture for both plate lengths (6-hole, P = 0.008, P \u3c 0.001; 12-hole, P = 0.006, P \u3c 0.001). Conclusions: The use of an angulated locked end screw may enhance the resistance of osteoporotic bone to peri-implant fractures caused by bending forces

    Frontal Crash Injury Metrics are Below Mandated Limits for a Spica Casted Child Dummy in Currently Available Restraints

    No full text
    Background: There is a paucity of data defining safe transport protocols for children treated with hip spica casting. Although restraint devices for casted children are available, all federally mandated testing uses a noncasted anthropomorphic test device (ATD or crash dummy). The purpose of this study was to evaluate current restraint options in simulated frontal crash testing using a casted pediatric ATD to determine injury risk to the head, cervical spine, chest, and pelvis. Methods: Using a 3-year-old ATD, dynamic crash sled tests simulating frontal crash were performed in accordance with government safety standards. The ATD was casted in a double-leg spica and the following restraint devices were tested: a seat designed for spica casted children, a restraint vest-harness, a traditional booster seat, and 2 traditional forward-facing car seats. Results: Although the presence of the cast increased many of the injury metrics measured, all seats passed current federal guidelines for the head and chest. No single seat performed best in all metrics. The greatest magnitude of neck loading and second-highest head injury criterion values were observed for the booster seat. The vest-harness produced the highest head injury criterion and the chest compression exceeded proposed federal limits. Conclusions: The results suggest safe transport in commercially available seats is possible with the child properly restrained in a correctly fitting seat. However, parents should not assume a child restraint system is appropriate for use just based on fit as, for example, seats with harnesses outperformed an easy to fit booster seat. Clinical relevance: Each child and the position of the child\u27s cast are unique and discharge planning involves consideration of safe transportation. Although this study suggests several seats used to transport spica casted children pass the federal head and chest injury prevention requirements, it is important to recognize that some children may still require emergency vehicle transport
    • 

    corecore