51 research outputs found

    Physiological Measurements of Winter Wheat under Stress: I. Water Relations, Growth, Elemental Composition, and Yield of Wheat Grown with Fertilizer Placed in Strips or Broadcasted Ii. Water Relations of Wheat Grown in North-south Versus East-west Directions Iii. Water Relations of Wheat Cultivars Grown with Cadmium

    Get PDF
    The traditional organization of this thesis has been altered to assist the reader in understanding the material. The thesis contains three independent areaswhich have been prepared for publication. The results have been written to suit the format for publication. Information shown in this pattern will allow the reader to understand the material more easily than if the traditional form had been used. In each chapte:r, the information is given under the usual headings of a publication: abstract, introduction and literature review, materials and methods, and results and discussion. All the references are given collectively at the end of the thesis. A general summary of the results from the entire thesis is reported for all three studies. The three areas are: I -Water relations, growth, elemental compositions, and yield of wheat grown with fertilizer placed in strips or broadcasted. II - Water relations of wheat grown in north-south versus east-west direction. III - Water relations of wheat cultivar-s grown with cadmium.Agronom

    Development and Testing of Cool-Season Grass Species, Varieties and Hybrids for Biomass Feedstock Production in Western North America

    Get PDF
    Breeding of native cool-season grasses has the potential to improve forage production and expand the range of bioenergy feedstocks throughout western North America. Basin wildrye (Leymus cinereus) and creeping wildrye (Leymus triticoides) rank among the tallest and most rhizomatous grasses of this region, respectively. The objectives of this study were to develop interspecific creeping wildrye (CWR) × basin wildrye (BWR) hybrids and evaluate their biomass yield relative to tetraploid ‘Trailhead’, octoploid ‘Magnar’ and interploidy-hybrid ‘Continental’ BWR cultivars in comparison with other perennial grasses across diverse single-harvest dryland range sites and a two-harvest irrigated production system. Two half-sib hybrid populations were produced by harvesting seed from the tetraploid self-incompatible Acc:641.T CWR genet, which was clonally propagated by rhizomes into isolated hybridization blocks with two tetraploid BWR pollen parents: Acc:636 and ‘Trailhead’. Full-sib hybrid seed was also produced from a controlled cross of tetraploid ‘Rio’ CWR and ‘Trailhead’ BWR plants. In space-planted range plots, the ‘Rio’ CWR × ‘Trailhead’ BWR and Acc:641.T CWR × Acc:636 BWR hybrids displayed high-parent heterosis with 75% and 36% yield advantages, respectively, but the Acc:641.T CWR × ‘Trailhead’ BWR hybrid yielded significantly less than its BWR high-parent in this evaluation. Half-sib CWR × BWR hybrids of Acc:636 and ‘Trailhead’ both yielded as good as or better than available BWR cultivars, with yields similar to switchgrass (Panicum virgatum), in the irrigated sward plots. These results elucidate opportunity to harness genetic variation among native grass species for the development of forage and bioenergy feedstocks in western North America

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure

    Fluctuation Induced Homochirality

    Full text link
    We propose a new mechanism for the achievment of homochirality in life without any autocatalytic production process. Our model consists of a spontaneous production together with a recycling cross inhibition in a closed system. It is shown that although the rate equations for this system predict no chiral symmetry breaking, the stochastic master equation predicts complete homochirality. This is because the fluctuation induced by the discreteness of population numbers of participating molecules plays essential roles. This fluctuation conspires with the recyling cross inhibition to realize the homochirality.Comment: 13 pages, 6 figure

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    LETTER FROM THE EDITOR

    No full text

    Automating a Commercial Swather for Harvesting Forage Plots

    No full text

    Climate change vulnerability higher in arctic than alpine bumblebees

    Get PDF
    Arctic and alpine species are expected to be particularly vulnerable to climate change as they inhabit areas of extreme climates. To understand how such species may respond, we compared two groups of bumblebees that specialise in arctic (Alpinobombus) and alpine (Mendacibombus) biomes. These bumblebee species are all extreme cold specialists with similar ecological niches, making them good candidate species for comparison of how groups inhabiting different biomes may respond to climate change. Using an ensemble of species distribution models for eighteen bumblebee species (ten Mendacibombus; eight Alpinobombus), we estimated their current distributions using selected climate variables. The models were used to predict future distributions based on two future climate change scenarios for 2040-2060 and three dispersal scenarios. We found significant differences between the predicted relative area changes of the two groups under all combinations of climate change and dispersal scenarios. Alpinobombus species were consistently projected to have larger distribution declines, while the responses of Mendacibombus species were much more varied, with some Mendacibombus species projected to have distribution expansions provided that they are able to disperse to occupy new territory. From these results, we show that arctic species would be much more likely than alpine species to experience distribution declines under climate change
    • …
    corecore