365 research outputs found
A Theory of Cheap Control in Embodied Systems
We present a framework for designing cheap control architectures for embodied
agents. Our derivation is guided by the classical problem of universal
approximation, whereby we explore the possibility of exploiting the agent's
embodiment for a new and more efficient universal approximation of behaviors
generated by sensorimotor control. This embodied universal approximation is
compared with the classical non-embodied universal approximation. To exemplify
our approach, we present a detailed quantitative case study for policy models
defined in terms of conditional restricted Boltzmann machines. In contrast to
non-embodied universal approximation, which requires an exponential number of
parameters, in the embodied setting we are able to generate all possible
behaviors with a drastically smaller model, thus obtaining cheap universal
approximation. We test and corroborate the theory experimentally with a
six-legged walking machine. The experiments show that the sufficient controller
complexity predicted by our theory is tight, which means that the theory has
direct practical implications. Keywords: cheap design, embodiment, sensorimotor
loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure
Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer
Microscopic studies of superconductors and their vortices play a pivotal role
in our understanding of the mechanisms underlying superconductivity. Local
measurements of penetration depths or magnetic stray-fields enable access to
fundamental aspects of superconductors such as nanoscale variations of
superfluid densities or the symmetry of their order parameter. However,
experimental tools, which offer quantitative, nanoscale magnetometry and
operate over the large range of temperature and magnetic fields relevant to
address many outstanding questions in superconductivity, are still missing.
Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices
in the cuprate superconductor YBCO, using a scanning quantum sensor in form of
a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample
distance of ~10nm we achieve allows us to observe striking deviations from the
prevalent monopole approximation in our vortex stray-field images, while we
find excellent quantitative agreement with Pearl's analytic model. Our
experiments yield a non-invasive and unambiguous determination of the system's
local London penetration depth, and are readily extended to higher temperatures
and magnetic fields. These results demonstrate the potential of quantitative
quantum sensors in benchmarking microscopic models of complex electronic
systems and open the door for further exploration of strongly correlated
electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages,
6 figures). Comments welcome. Further information under
http://www.quantum-sensing.c
Hsp90 governs dispersion and drug resistance of fungal biofilms
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections
A repurposing strategy for Hsp90 inhibitors demonstrates their potency against filarial nematodes
Novel drugs are required for the elimination of infections caused by filarial worms, as most commonly used drugs largely target the microfilariae or first stage larvae of these infections. Previous studies, conducted in vitro, have shown that inhibition of Hsp90 kills adult Brugia pahangi. As numerous small molecule inhibitors of Hsp90 have been developed for use in cancer chemotherapy, we tested the activity of several novel Hsp90 inhibitors in a fluorescence polarization assay and against microfilariae and adult worms of Brugia in vitro. The results from all three assays correlated reasonably well and one particular compound, NVP-AUY922, was shown to be particularly active, inhibiting Mf output from female worms at concentrations as low as 5.0 nanomolar after 6 days exposure to drug. NVP-AUY922 was also active on adult worms after a short 24 h exposure to drug. Based on these in vitro data, NVP-AUY922 was tested in vivo in a mouse model and was shown to significantly reduce the recovery of both adult worms and microfilariae. These studies provide proof of principle that the repurposing of currently available Hsp90 inhibitors may have potential for the development of novel agents with macrofilaricidal properties
Socio-Economic Instability and the Scaling of Energy Use with Population Size
The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system
Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures
High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites
Financial considerations in the conduct of multi-centre randomised controlled trials: evidence from a qualitative study.
National Coordinating Centre for Research Methodology; Medical Research Council, UK Department of Health; Chief Scientist OfficeNot peer reviewedPublisher PD
Unilateral caudate inactivation increases motor impulsivity in rhesus monkeys
\ua9 2023. Impulsivity, the tendency to react quickly and without consideration of consequences, is correlated with asymmetry in the volume of the caudate nucleus in human patients. In this study, we sought to determine whether the induction of functional asymmetry in the caudate nucleus of monkeys would produce phenomenologically comparable behavior. We found that unilateral suppression of the ventral caudate nucleus increases impulsive behavior in rhesus monkeys. Impulsivity was modeled by the subjects’ inability to maintain hold of a touch-sensitive bar until presentation of an imperative signal. Two methods were used to suppress activity in the caudate region. First, muscimol was locally infused. Second, a viral construct expressing the hM4Di DREADD (designer receptor exclusively activated by designer drug) was injected at the same site. Clozapine N-oxide and deschloroclozapine activate the DREADD to suppress neuronal activity. Both methods of suppression, pharmacological and chemogenetic, increased the rate of early bar releases, a behavior we interpret to indicate impulsivity. Thus, we demonstrate a causal relationship between caudate asymmetry and impulsivity
DNA repair, genome stability and cancer: a historical perspective
The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy
Model Selection Approach Suggests Causal Association between 25-Hydroxyvitamin D and Colorectal Cancer
Vitamin D deficiency has been associated with increased risk of colorectal cancer (CRC), but causal relationship has not yet been confirmed. We investigate the direction of causation between vitamin D and CRC by extending the conventional approaches to allow pleiotropic relationships and by explicitly modelling unmeasured confounders.Plasma 25-hydroxyvitamin D (25-OHD), genetic variants associated with 25-OHD and CRC, and other relevant information was available for 2645 individuals (1057 CRC cases and 1588 controls) and included in the model. We investigate whether 25-OHD is likely to be causally associated with CRC, or vice versa, by selecting the best modelling hypothesis according to Bayesian predictive scores. We examine consistency for a range of prior assumptions.Model comparison showed preference for the causal association between low 25-OHD and CRC over the reverse causal hypothesis. This was confirmed for posterior mean deviances obtained for both models (11.5 natural log units in favour of the causal model), and also for deviance information criteria (DIC) computed for a range of prior distributions. Overall, models ignoring hidden confounding or pleiotropy had significantly poorer DIC scores.Results suggest causal association between 25-OHD and colorectal cancer, and support the need for randomised clinical trials for further confirmations
- …
