288 research outputs found
How fast is a snail’s pace? The influences of size and substrate on gastropod speed of locomotion
Terrestrial gastropods display monotaxic direct crawling. During locomotion, smooth muscle contraction stimulates a series of pedal waves that move along the ventral surface of the foot. These waves interact with a thin layer of mucus produced by the foot, propelling the animal forward. Although the mechanism by which this process occurs has been well studied, less is known about how morphological or environmental factors affect this process, and ultimately how they may alter the speed of propulsion. In this study, we tested the influences of body size, substrate type, and substrate orientation on crawling speed in the terrestrial snail Cornu aspersum. We found that substrate texture and orientation had a strong effect on speed, whereas snail body size and the presence of a conspecific trail did not. Crawling speed across rough sandpaper was the most striking, showing a clear inversely proportional relationship between the size of abrasive particle and speed. We suggest that this may be the result of substrate attributes interfering with mucus adhesion or mucus production, subsequently affecting locomotion, although gait choice or the frequency and length of each pedal wave may also play a role.PostprintPeer reviewe
Climate change refugia for the flora and fauna of England
A variety of evidence suggests that species have, in the past, been able to withstand the effects of climatic change in localised environments known as refugia, where specific environmental conditions acted as a buffer against broader-scale climatic changes.
Therefore, an important question for conservation is whether refugia might exist under current and future anthropogenic climate change. If there are areas that are likely to remain relatively climatically stable and so enable species to persist despite climate change making surrounding areas unsuitable, identifying and protecting these places will be an important part of future conservation strategies.
This report is part of a project that is investigating this question. The report was commissioned to identify the characteristics of potential refugia, to investigate evidence for the existence of contemporary refugia by analysing patterns of local persistence and disappearance of over 1000 species across a range of taxa, and to identify sites in England with the potential to function as refugia for different taxonomic groups at a range of spatial scales
Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter
Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine γ-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-γ (IFNγ) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNγ reactivated latent murine γ-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status
Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases
Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
Recommended from our members
Can understanding reward help illuminate anhedonia?
Purpose of review: The goal of this paper is to examine how reward processing might help us understand the symptom of anhedonia.
Recent findings: There are extensive reviews exploring the relationship between responses to rewarding stimuli and depression. These often include a discussion on anhedonia and how this might be underpinned in particular by dysfunctional reward processing. However, there is no specific consensus on whether studies to date have adequately examined the various sub-components of reward processing or how these might relate in turn to various aspects of anhedonia symptoms.
Summary: The approach to understanding the symptom of anhedonia should be to examine all the sub-components of reward processing at the subjective and objective behavioural and neural level, with well validated tasks that can be replicated. Investigating real life experiences of anhedonia and how theses might be predicted by objective lab measures is also needed in future research
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
- …