82 research outputs found

    Nitric oxide synthase 2A (NOS2A) polymorphisms are not associated with invasive pneumococcal disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus pneumoniae </it>(pneumococcus) is responsible for over one million deaths per year, with young children, the elderly and immunocompromised individuals being most at risk. Approximately half of East African children have been reported to be asymptomatic carriers of pneumococcus with invasive infection occurring after the disruption of the respiratory membrane which is believed to be caused by the host immune response. Racial incidence of invasive pneumococcal disease (IPD) is higher in certain populations even after adjusting for environmental factors suggesting a genetic component to disease susceptibility. The nitric oxide synthase 2A (NOS2A) gene is responsible for the production of nitric oxide under pathological conditions including host defence against bacterial infection. Nitric oxide is a modulator of apoptotic and inflammatory cascades and endothelial permeability. We hypothesised that genetic variants within this gene may predispose to disease risk and survival.</p> <p>Methods</p> <p>A cohort of 299 children with IPD (221 meningitis, 41 pneumonia and 37 with bacteraemia) and 931 age matched controls from Malawi were used in this study. We investigated nine haplotype tagging single nucleotide polymorphisms within the NOS2A gene and compared the presence or absence of the minor alleles in cases and controls and survivors and non-survivors within the cases.</p> <p>Results</p> <p>We observed no significant associations between cases and controls or with survival in either all IPD cases or in the separate analysis of meningitis cases. A near significant association was obtained for the comparison of rs8078340 in cases and controls (p-value, 0.078). However, results were unadjusted for multiple testing.</p> <p>Conclusion</p> <p>Our results suggest that polymorphic variation within the NOS2A gene does not influence invasive pneumococcal disease susceptibility or survival.</p

    Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis

    Get PDF
    We investigate the accumulated microbial and autoantigen antibody repertoire in adult-onset dermatomyositis patients sero-positive for TIF1γ (TRIM33) autoantibodies. We use an untargeted high-throughput approach which combines immunoglobulin disease-specific epitope-enrichment and identification of microbial and human antigens. We observe antibodies recognizing a wider repertoire of microbial antigens in dermatomyositis. Antibodies recognizing viruses and Poxviridae family species are significantly enriched. The identified autoantibodies recognise a large portion of the human proteome, including interferon regulated proteins; these proteins cluster in specific biological processes. In addition to TRIM33, we identify autoantibodies against eleven further TRIM proteins, including TRIM21. Some of these TRIM proteins share epitope homology with specific viral species including poxviruses. Our data suggest antibody accumulation in dermatomyositis against an expanded diversity of microbial and human proteins and evidence of non-random targeting of specific signalling pathways. Our findings indicate that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis

    Early changes in visuospatial episodic memory can help distinguish primary age‐related tauopathy from Alzheimer’s disease

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-02-08, rev-recd 2021-03-19, accepted 2021-05-01, pub-electronic 2021-05-29Article version: VoRPublication status: PublishedFunder: Alzheimer's Research Trust; Id: http://dx.doi.org/10.13039/501100000319Funder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265Funder: Unilever; Id: http://dx.doi.org/10.13039/100007190Funder: Economic and Social Research Council; Id: http://dx.doi.org/10.13039/501100000269Funder: Alzheimer's Society; Id: http://dx.doi.org/10.13039/501100000320Funder: Wellcome Trust; Grant(s): 00388

    The non-synonymous SNP, R1150W, in SCN9A is not associated with chronic widespread pain susceptibility

    Get PDF
    Acknowledgements The authors wish to thank all of the primary care practices and participants in the EPIFUND study, the EPIFUND study team and Arthritis Research UK lab staff for carrying out the genotyping. The authors thank the men who participated in the seven countries and the research/nursing staff in the seven centres of the EMAS study used in the current analysis: C Pott (Manchester), E Wouters (Leuven), M del Mar Fernandez (Santiago de Compostela), M Jedrzejowska (Lodz), H-M Tabo (Tartu) and A Heredi (Szeged) for their data collection, and C Moseley (Manchester) for data entry and project coordination. DV and SB are senior clinical investigators of the Fund for Scientific Research-Flanders, Belgium (F W O-Vlaanderen). SB is holder of the Leuven University Chair in Gerontology and Geriatrics. The researchers thank the Framingham study participants and personnel. This work was supported by Arthritis Research UK, Chesterfield, UK. The European Male Ageing Study (EMAS) is funded by the Commission of the European Communities Fifth Framework Programme ‘Quality of life and management of living resources’ grant QLK6-CT-2001-00258. Genotyping of the Dyne Steel DNA Bank for Ageing and Cognition cohort was supported by the BBSRC and the study was supported by AgeUK. The Framingham study was supported by grants from the National Heart, Lung, and Blood Institute (NHLBI contract N01-HC-25195) and NIH AR47785 and AG18393.Peer reviewedPublisher PD

    SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration

    Get PDF
    High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation

    Pleiotropic meta-analysis of cognition, education, and schizophrenia differentiates roles of early neurodevelopmental and adult synaptic pathways

    Get PDF
    Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected (“concordant”) direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive (“discordant”) relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10−8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms—early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways—that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness

    Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics

    Get PDF
    Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.Peer reviewe

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan
    corecore