264 research outputs found

    Organizational issues and major problems of palliative care concerning treatment of end-stage renal disease in Polish residential hospices and hospital- -based palliative medicine wards

    Full text link
    Copyright © Via Medica. Background. Patients diagnosed with end-stage renal disease experience a significant level of symptom burden, including pain, nausea and vomiting, inability to urinate, fatigue etc. At this point in disease progression, it is important to establish what types and choices of therapy are most suitable for these patients, in particular, the value of continuing dialysis treatment. Material and methods. A self-administered questionnaire was distributed among Polish residential hospices and hospital based palliative medicine wards. All responses obtained underwent statistical analysis using Pearson's Chi Square test. Results. Permanent palliative care facilities, from which 73 out of 166 registered in Poland, took part in the survey. ESRD patients were identified to be cared by 81% of the aforementioned institutions. The most common treatment approach for these patients was highlighted as conservative treatment (68%), followed by hemodialysis (47%), whereas merely 11% provided peritoneal dialysis. Differences between facilities were identified relating to therapeutic recommendations for terminal ESRD patients with residential hospices more likely to recommend dialysis in conjunction with palliative care, whereas palliative wards advocated a withdrawal from dialysis followed by the initiation of palliative care. Conclusion. All surveyed facilities considered ESRD patients eligible for guaranteed hospice and palliative care services. However, certain changes are needed to improve care for ESRD patients, including: The development of collaborative partnerships between hospices, dialysis centers and nephrologists, development of guidelines for withdrawing dialysis and applying conservative treatment, introducing better renal-based training for medical personnel as well as the introduction of transparency within rules relating to the financing of these services

    Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC

    Full text link
    A general quantum constraint of the form C=T2BIHC= - \partial_T^2 \otimes B - I\otimes H (realized in particular in Loop Quantum Cosmology models) is studied. Group Averaging is applied to define the Hilbert space of solutions and the relational Dirac observables. Two cases are considered. In the first case, the spectrum of the operator (1/2)π2BH(1/2)\pi^2 B - H is assumed to be discrete. The quantum theory defined by the constraint takes the form of a Schroedinger-like quantum mechanics with a generalized Hamiltonian B1H\sqrt{B^{-1} H}. In the second case, the spectrum is absolutely continuous and some peculiar asymptotic properties of the eigenfunctions are assumed. The resulting Hilbert space and the dynamics are characterized by a continuous family of the Schroedinger-like quantum theories. However, the relational observables mix different members of the family. Our assumptions are motivated by new Loop Quantum Cosmology models of quantum FRW spacetime. The two cases considered in the paper correspond to the negative and, respectively, positive cosmological constant. Our results should be also applicable in many other general relativistic contexts.Comment: RevTex4, 32 page

    Macroscopically local correlations can violate information causality

    Full text link
    Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is the fact that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Quantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality and macroscopic locality are two principles recently proposed to solve this problem. However none of them were proven to define the set of correlations one can observe. In this paper, we present an extension of information causality and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying macroscopic locality, information causality would be violated. This gives more confidence in information causality as a physical principle defining the possible correlation allowed by nature.Comment: are welcome. 6 pages, 4 figs. This is the originally submitted version. The published version contains some bounds on quantum realizations of d2dd isotropic boxes (table 1), found by T. Vertesi, who kindly shared them with u

    On the connection between mutually unbiased bases and orthogonal Latin squares

    Full text link
    We offer a piece of evidence that the problems of finding the number of mutually unbiased bases (MUB) and mutually orthogonal Latin squares (MOLS) might not be equivalent. We study a particular procedure which has been shown to relate the two problems and generates complete sets of MUBs in power-of-prime dimensions and three MUBs in dimension six. For these cases, every square from an augmented set of MOLS has a corresponding MUB. We show that this no longer holds for certain composite dimensions.Comment: 6 pages, submitted to Proceedings of CEWQO 200

    A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field

    Get PDF
    A Higgsless model for strong, electro-weak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC where C is the local conformal symmetry group. The natural minimal conformally invariant form of total lagrangian is postulated. It contains all Standard Model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions we can eliminate all four real components of the Higgs doublet in this model. However the masses of vector mesons, leptons and quarks are automatically generated and are given by the same formulas as in the conventional Standard Model. The gravitational sector is analyzed and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions. No figures.Comment: 25 pages, preprin

    Monogamy of Correlations vs. Monogamy of Entanglement

    Get PDF
    A fruitful way of studying physical theories is via the question whether the possible physical states and different kinds of correlations in each theory can be shared to different parties. Over the past few years it has become clear that both quantum entanglement and non-locality (i.e., correlations that violate Bell-type inequalities) have limited shareability properties and can sometimes even be monogamous. We give a self-contained review of these results as well as present new results on the shareability of different kinds of correlations, including local, quantum and no-signalling correlations. This includes an alternative simpler proof of the Toner-Verstraete monogamy inequality for quantum correlations, as well as a strengthening thereof. Further, the relationship between sharing non-local quantum correlations and sharing mixed entangled states is investigated, and already for the simplest case of bi-partite correlations and qubits this is shown to be non-trivial. Also, a recently proposed new interpretation of Bell's theorem by Schumacher in terms of shareability of correlations is critically assessed. Finally, the relevance of monogamy of non-local correlations for secure quantum key distribution is pointed out, although, and importantly, it is stressed that not all non-local correlations are monogamous.Comment: 12 pages, 2 figures. Invited submission to a special issue of Quantum Information Processing. v2: Published version. Open acces

    Solid-Phase Synthesis of Arylpiperazine Derivatives and Implementation of the Distributed Drug Discovery (D3) Project in the Search for CNS Agents

    Get PDF
    We have successfully implemented the concept of Distributed Drug Discovery (D3) in the search for CNS agents. Herein, we demonstrate, for the first time, student engagement from different sites around the globe in the development of new biologically active compounds. As an outcome we have synthesized a 24-membered library of arylpiperazine derivatives targeted to 5-HT1A and 5-HT2A receptors. The synthesis was simultaneously performed on BAL-MBHA-PS resin in Poland and the United States, and on BAL-PS-SynPhase Lanterns in France. The D3 project strategy opens the possibility of obtaining potent 5-HT1A/5-HT2A agents in a distributed fashion. While the biological testing is still centralized, this combination of distributed synthesis with screening will enable a D3 network of students world-wide to participate, as part of their education, in the synthesis and testing of this class of biologically active compounds

    Evidence for Spinodal Decomposition in Nuclear Multifragmentation

    Full text link
    Multifragmentation of a ``fused system'' was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher-order charge correlations for fragments show a weak but non ambiguous enhancement of events with nearly equal-sized fragments. Supported by dynamical calculations in which spinodal decomposition is simulated, this observed enhancement is interpreted as a ``fossil'' signal of spinodal instabilities in finite nuclear systems.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter

    The ALPS project release 1.3: open source software for strongly correlated systems

    Full text link
    We present release 1.3 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). Changes in the new release include a DMRG program for interacting models, support for translation symmetries in the diagonalization programs, the ability to define custom measurement operators, and support for inhomogeneous systems, such as lattice models with traps. The software is available from our web server at http://alps.comp-phys.org/
    corecore