A fruitful way of studying physical theories is via the question whether the
possible physical states and different kinds of correlations in each theory can
be shared to different parties. Over the past few years it has become clear
that both quantum entanglement and non-locality (i.e., correlations that
violate Bell-type inequalities) have limited shareability properties and can
sometimes even be monogamous. We give a self-contained review of these results
as well as present new results on the shareability of different kinds of
correlations, including local, quantum and no-signalling correlations. This
includes an alternative simpler proof of the Toner-Verstraete monogamy
inequality for quantum correlations, as well as a strengthening thereof.
Further, the relationship between sharing non-local quantum correlations and
sharing mixed entangled states is investigated, and already for the simplest
case of bi-partite correlations and qubits this is shown to be non-trivial.
Also, a recently proposed new interpretation of Bell's theorem by Schumacher in
terms of shareability of correlations is critically assessed. Finally, the
relevance of monogamy of non-local correlations for secure quantum key
distribution is pointed out, although, and importantly, it is stressed that not
all non-local correlations are monogamous.Comment: 12 pages, 2 figures. Invited submission to a special issue of Quantum
Information Processing. v2: Published version. Open acces