239 research outputs found

    The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change

    Get PDF
    The global geographic distribution of biodiversity and biomes is determined by species-specific physiological tolerances to climatic constraints. Current vegetation models employ empirical bioclimatic relationships to predict present-day vegetation patterns and to forecast biodiversity changes and biome shifts under climatic change. In this paper, we consider trade-offs in plant functioning and their responses under climatic changes to forecast and explain changes in plant functional richness and shifts in biome geographic distributions. <br><br> The Jena Diversity model (JeDi) simulates plant survival according to essential plant functional trade-offs, including ecophysiological processes such as water uptake, photosynthesis, allocation, reproduction and phenology. We use JeDi to quantify changes in plant functional richness and biome shifts between present-day and a range of possible future climates from two SRES emission scenarios (A2 and B1) and seven global climate models using metrics of plant functional richness and functional identity. <br><br> Our results show (i) a significant loss of plant functional richness in the tropics, (ii) an increase in plant functional richness at mid and high latitudes, and (iii) a pole-ward shift of biomes. While these results are consistent with the findings of empirical approaches, we are able to explain them in terms of the plant functional trade-offs involved in the allocation, metabolic and reproduction strategies of plants. We conclude that general aspects of plant physiological tolerances can be derived from functional trade-offs, which may provide a useful process- and trait-based alternative to bioclimatic relationships. Such a mechanistic approach may be particularly relevant when addressing vegetation responses to climatic changes that encounter novel combinations of climate parameters that do not exist under contemporary climate

    Immune status of recipients following bone marrow - Augmented solid organ transplantation

    Get PDF
    It has been postulated that the resident “passenger” leukocytes of hematolymphoid origin that migrate from whole organ grafts and subsequently establish systemic chimerism are essential for graft acceptance and the induction of donor-specific nonreactivity. This phenomenon was augmented by infusing 3 × 108 unmodified donor bone-marrow cells into 40 patients at the time of organ transplantation. Fifteen of the first 18 analyzable patients had sequential immunological evaluation over postoperative intervals of 5 to 17 months, (which included 7 kidney (two with islets), 7 liver (one with islets), and one heart recipient). The evolution of changes was compared with that in 16 kidney and liver nonmarrow controls followed for 4 to5 months. The generic immune reactivity of peripheral blood mononuclear cells (PBMC) was determined by their proliferative responses to mitogens (PHA, ConA). Alloreactivity was measured by the recipient mixed lymphocyte reaction (MLR) to donor and HLA-mis-matched third-party panel cells. Based on all 3 tests,the recipients were classified as donor-specific hyporeactive, intermediate, and responsive; patients who were globally suppressed made up a fourth category. Eight (53%) of the 15 marrow-treated recipients exhibited progressive modulation of donor-specific reactivity (3 hyporeactive and 5 intermediate) while 7 remained antidonor-responsive. In the nonmarrow controls, 2 (12.5%) of the 16 patients showed donor-specific hyporeactivity, 10 (62.5%) were reactive, and 4 (25%) studied during a CMV infection had global suppression of responsiveness to all stimuli. © 1995 by Williams and Wilkins

    The relative importance of seed competition, resource competition and perturbations on community structure

    Get PDF
    While the regional climate is the primary selection pressure for whether a plant strategy can survive, however, competitive interactions strongly affect the relative abundances of plant strategies within communities. Here, we investigate the relative importance of competition and perturbations on the development of vegetation community structure. To do so, we develop DIVE (Dynamics and Interactions of VEgetation), a simple general model that links plant strategies to their competitive dynamics, using growth and reproduction characteristics that emerge from climatic constraints. The model calculates population dynamics based on establishment, mortality, invasion and exclusion in the presence of different strengths of perturbations, seed and resource competition. The highest levels of diversity were found in simulations without competition as long as mortality is not too high. However, reasonable successional dynamics were only achieved when resource competition is considered. Under high levels of competition, intermediate levels of perturbations were required to obtain coexistence. Since succession and coexistence are observed in plant communities, we conclude that the DIVE model with competition and intermediate levels of perturbation represents an adequate way to model population dynamics. Because of the simplicity and generality of DIVE, it could be used to understand vegetation structure and functioning at the global scale and the response of vegetation to global change

    Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results

    Get PDF
    We examined the changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVMs) obtained from the Inter-Sectoral Impact Model Intercomparison Project. Simulation results were obtained using five global climate models (GCMs) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (i.e., emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. At the end of the simulation period, changes from the year 2000 in all three variables varied considerably from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC and SOC projections, GVMs are the main influence on uncertainties (60 % and 90 %, respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes in vegetation carbon residence times is dominated by GVM uncertainty, particularly in the latter half of the 21st century. In addition, we found that the contribution of each uncertainty source is spatiotemporally heterogeneous and it differs among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division becomes cooler (from ca. 80 % in the equatorial division to 40 % in the snow division). Our results suggest that to assess climate change impacts on global ecosystem C cycling among each RCP scenario, the long-term C dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are more critical factors than photosynthetic processes. The different trends in the contribution of uncertainty sources in each variable among climate divisions indicate that improvement of GVMs based on climate division or biome type will be effective. On the other hand, in dry regions, GCMs are the dominant uncertainty source in climate impact assessments of vegetation and soil C dynamics

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate
    corecore