98 research outputs found

    The modification of surfaces : from fundamentals to applications

    Get PDF
    You’re surrounded by surfaces. Viewed from a macro perspective they might appear soft, brightly colored, or textured. Maybe you don’t think anything of them at all. But what happens when we take a closer look? Here, down at the nanoscale, chemical reactions at surfaces play a hugely important role in the world in which we live. Whether it’s preventing metal corrosion, or developing the latest fuel cell, the state of surface being investigated is crucial. Indeed, by intentionally modifying surfaces we can introduce desirable properties, all because we’re controlling what goes on at the molecular level. The first part of this thesis discusses the use of model surfaces to probe fundamental properties and processes. Firstly, model surfaces displaying well-defined chemical functionality are created using self-assembled monolayers (SAMs), and are subsequently used as a means to understand the primary interactions that occur between carbonaceous soot contaminants, and surfactant-like molecules in engine oils. The quartz-crystal microbalance (QCM) is employed as a means to determine minute levels of surface adsorption, and a structure-activity relationship for these molecules is suggested. Next, a new approach for profiling the activity of molecular adsorbates at carbon surfaces is introduced, which allows for the impact of individual surface features on resulting electrochemical activity to be determined. It is used to study the case of quinone adsorption at graphite electrodes, a currently debated topic, and it is revealed that current literature models regarding the activity of the basal surface need revision, with significant implications for carbon electrochemistry as a whole. The second part of this thesis turns to understanding and controlling surface modification processes. Through a range of complementary techniques, the ability of scanning electrochemical cell microscopy (SECCM) to control the extent of the aryl diazonium grafting process at sp2 carbon surfaces is demonstrated. Aryl diazonium chemistry as been identified as a route to band-gap generation in graphene electronics, and as such, controlled routes to localized surface modification are of great interest. Next, the versatility of SECCM for controlled surface modification is further demonstrated, where it is used as a method to draw intricate patterns of defined surface chemistry in graphene, with a strong focus on the production of integrated graphene circuits, a prospect often promised. Finally, a new methodology for the transfer of graphene synthesized via chemical vapor deposition (CVD) is introduced. Crucially, it yields graphene surfaces with distinctly low levels of contamination, an area that currently poses a problem in graphene research

    Molecular functionalization of graphite surfaces : Basal Plane versus Step Edge electrochemical activity

    Get PDF
    The chemical functionalization of carbon surfaces has myriad applications, from tailored sensors to electrocatalysts. Here, the adsorption and electrochemistry of anthraquinone-2,6-disulfonate (AQDS) is studied on highly oriented pyrolytic graphite (HOPG) as a model sp2 surface. A major focus is to elucidate whether adsorbed electroactive AQDS can be used as a marker of step edges, which have generally been regarded as the main electroactive sites on graphite electrode surfaces. First, the macroscopic electrochemistry of AQDS is studied on a range of surfaces differing in step edge density by more than 2 orders of magnitude, complemented with ex situ tapping mode atomic force microscopy (AFM) data. These measurements show that step edges have little effect on the extent of adsorbed electroactive AQDS. Second, a new fast scan cyclic voltammetry protocol carried out with scanning electrochemical cell microscopy (SECCM) enables the evolution of AQDS adsorption to be followed locally on a rapid time scale. Subsequent AFM imaging of the areas probed by SECCM allows a direct correlation of the electroactive adsorption coverage and the actual step edge density of the entire working area. The amount of adsorbed electroactive AQDS and the electron transfer kinetics are independent of the step edge coverage. Last, SECCM reactive patterning is carried out with complementary AFM measurements to probe the diffusional electroactivity of AQDS. There is essentially uniform and high activity across the basal surface of HOPG. This work provides new methodology to monitor adsorption processes at surfaces and shows unambiguously that there is no correlation between the step edge density of graphite surfaces and the observed coverage of electroactive AQDS. The electroactivity is dominated by the basal surface, and studies that have used AQDS as a marker of steps need to be revised

    Screening the surface structure-dependent action of a benzotriazole derivative on copper electrochemistry in a triple-phase nanoscale environment

    Get PDF
    Copper (Cu) corrosion is a compelling problem in the automotive sector and in oil refinery and transport, where it is mainly caused by the action of acidic aqueous droplets dispersed in an oil phase. Corrosion inhibitors, such as benzotriazole (BTAH) and its derivatives, are widely used to limit such corrosion processes. The efficacy of corrosion inhibitors is expected to be dependent on the surface crystallography of metals exposed to the corrosion environment. Yet, studies of the effect of additives at the local level of the surface crystallographic structure of polycrystalline metals are challenging, particularly lacking for the triple-phase corrosion problem (metal/aqueous/oil). To address this issue, scanning electrochemical cell microscopy (SECCM), is used in an acidic nanodroplet meniscus|oil layer|polycrystalline Cu configuration to explore the grain-dependent influence of an oil soluble BTAH derivative (BTA-R) on Cu electrochemistry within the confines of a local aqueous nanoprobe. Electrochemical maps, collected in the voltammetric mode at an array of >1000 points across the Cu surface, reveal both cathodic (mainly the oxygen reduction reaction) and anodic (Cu electrooxidation) processes, of relevance to corrosion, as a function of the local crystallographic structure, deduced with co-located electron backscatter diffraction (EBSD). BTA-R is active on the whole spectrum of crystallographic orientations analyzed, but there is a complex grain-dependent action, distinct for oxygen reduction and Cu oxidation. The methodology pinpoints the surface structural motifs that facilitate corrosion-related processes and where BTA-R works most efficiently. Combined SECCM–EBSD provides a detailed screen of a spectrum of surface sites, and the results should inform future modeling studies, ultimately contributing to a better inhibitor design

    Tightness of slip-linked polymer chains

    Get PDF
    We study the interplay between entropy and topological constraints for a polymer chain in which sliding rings (slip-links) enforce pair contacts between monomers. These slip-links divide a closed ring polymer into a number of sub-loops which can exchange length between each other. In the ideal chain limit, we find the joint probability density function for the sizes of segments within such a slip-linked polymer chain (paraknot). A particular segment is tight (small in size) or loose (of the order of the overall size of the paraknot) depending on both the number of slip-links it incorporates and its competition with other segments. When self-avoiding interactions are included, scaling arguments can be used to predict the statistics of segment sizes for certain paraknot configurations.Comment: 10 pages, 6 figures, REVTeX

    Prospects of observing a quasar HII region during the Epoch of Reionization with redshifted 21cm

    Full text link
    We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changing the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.Comment: 17 pages, 12 figures, 3 tables, accepted for publication in MNRAS; changes in introduction and figure

    Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial

    Get PDF
    The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity

    National and firm-level drivers of the devolution of HRM decision making to line managers

    Get PDF
    Multinational companies must understand the influences on responsibility for managing people so that they can manage talent consistently thus ensuring that it is transferable across locations. We examine the impact of firm and national level characteristics on the devolution of HRM decision making to line managers. Our analysis draws on data from 2335 indigenous organizations in 21 countries. At the firm level, we found that where the HR function has higher power, devolution is less likely. At the national level, devolution of decision making to line management is more likely in societies with more stringent employment laws and lower power distance

    Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)

    Get PDF
    The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknown response of the WAIS to future warming remains a significant challenge for numerical models in quantifying predictions of future sea level rise. Sea level rise is one of the clearest planet-wide signals of human-induced climate change. The Sensitivity of the West Antarctic Ice Sheet to a Warming of 2 ∘C (SWAIS 2C) Project aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere as well as the associated average global temperature scenarios to and beyond the +2 ∘C target of the Paris Climate Agreement. Despite efforts through previous land and ship-based drilling on and along the Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for the interdisciplinary scientific opportunities and engineering challenges that an International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtual workshop in October 2020. This international partnership comprised of geologists, glaciologists, oceanographers, geophysicists, microbiologists, climate and ice sheet modelers, and engineers outlined specific research objectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneath the ice sheet. Sub-ice-shelf records have so far proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean surface temperature up to 2 ∘C above pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 ∘C global warming threshold (UNFCCC, 2015)

    Plant Species\u27 Origin Predicts Dominance and Response to Nutrient Enrichment and Herbivores in Global Grasslands

    Get PDF
    Exotic species dominate many communities; however the functional significance of species\u27 biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands
    • …
    corecore