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Tightness of slip-linked polymer chains
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We study the interplay between entropy and topological constraints for a polymer chain in which sliding
rings ~slip links! enforce pair contacts between monomers. These slip links divide a closed ring polymer into
a number of subloops which can exchange length among each other. In the ideal chain limit, we find the joint
probability density function for the sizes of segments within such a slip-linked polymer chain~paraknot!. A
particular segment is tight~small in size! or loose~of the order of the overall size of the paraknot! depending
on both the number of slip links it incorporates and its competition with other segments. When self-avoiding
interactions are included, scaling arguments can be used to predict the statistics of segment sizes for certain
paraknot configurations.

DOI: 10.1103/PhysRevE.65.061103 PACS number~s!: 05.20.2y, 02.10.Kn, 87.15.2v, 82.35.Lr

I. INTRODUCTION

Topological constraints decrease the accessible degrees of
freedom of a polymer chain@1#. Whether temporary or per-
manent, they are ubiquitous and affect the typical behavior of
polymers. For instance, temporary entanglements between
chains in a solution or melt of polymers give rise to reptation
dynamics as described by the tube model@2,3#. Permanent
entanglements, in turn, are central for the elastic behavior of
rubber~where they are chemically induced during vulcaniza-
tion! @4#, gels, and Olympic gels@2#. Their influence on the
dynamics is reflected by broad relaxation time spectra@5#.

Knots are a particular form of permanent topological en-
tanglement: A ‘‘knotted’’ closed chain cannot be reduced to a
simple ring ~the so-called unknot! without breaking bonds
@6–9#. One of the few exact results pertaining to the statistics
of knots is that a sufficiently long closed self-avoiding walk
contains knots with probability 1@10,11#. Thus, topological
constraints are inevitably created during the polymerization
of long closed chains and, more generally, knots and perma-
nent entanglements are a ubiquitous feature of multichain
polymer melts and solutions.

Topological considerations also play a major role in nu-
merous biological and chemical systems. For example, the
chromosomes forming almost 2 m of tangled, knotted DNA
cannot be separated during mitosis, and the genetic code of
the DNA double helix cannot be fully accessed during tran-
scription, in the presence of knots@12–14#. Special enzymes,
namely, DNA topoisomerases, are necessary to actively re-
move knots and entanglements under consumption of energy
from ATP @12–16#. The interplay between energy and en-
tropy at a fixed topology is relevant to the secondary struc-
ture of RNA which consists of paired segments interrupted
by open loops acting as entropy sources@17,18#. Similar is-
sues arise in the helix-coil transition of DNA@19–22#. Knot-
ted configurations have even been found in some proteins
@23,24#. Dynamically, the presence of knots and their pos-
sible effects on the mobility of biopolymers are essential to
the understanding of their behaviorin vivo or, e.g., as studied

by electrophoresisin vitro @25#. A similar role is played by
topological effects for the translocation of viral and nonviral
proteins@12,26#, and packaging of DNA@27#. In supramo-
lecular chemistry, molecules with identical bond sequence
but different topology can be produced which exhibit differ-
ent physical properties, and mechanically linked molecules
open up new vistas in information processing or nanoengi-
neering@28–30#. Further interest in the theoretical study of
the equilibrium behavior of polymers with a fixed topology
arises from new experimental techniques by which single
molecules can be probed and manipulated@31–34#, provid-
ing information on the mechanical behaviors of knotted and
unknotted biopolymers@35–37#.

Mathematical studies of topological structures date back
to Kepler @38#, Euler @39#, and Listing @40#. Motivated by
Thomson’s theory of vertex atoms@41#, systematic studies of
knots were undertaken by Tait, Kirkwood, and Little
@42–45#. Knot theory provides a number of so-called knot
invariants by means of which knots can be classified, such as
the Gauss winding number, the number of essential cross-
ings, or more refined invariants like knot polynomials@7–9#.
All permitted configurational changes of a knot can be de-
composed into the three Reidemeister moves@7–9#. There
exists a fundamental relation between knots and gauge
theory as knot projections and Feynman graphs share the
same basic ingredients corresponding to a Hopf algebra@8#.

Recently, there has been increasing interest in the inter-
play of topological constraints and thermal fluctuations; the
latter being ubiquitous for dilute or semidilute polymer solu-
tions or melts at finite temperatures. Statistical mechanical
treatments of permanent entanglements and of knots are,
however, quite difficult since topological restrictions cannot
be formulated as a Hamiltonian problem but appear as hard
constraints partitioning the phase space@2,6,46–48#. Conse-
quently, only a relatively small range of problems have been
treated analytically~see, for instance,@49–57#!.

To overcome such difficulties in the context of the en-
tropic elasticity for rubber networks, Ball, Doi, Edwards, and
co-workers replaced permanent entanglements by slip links
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@58#. Slip links enforce contacts between pairs of monomers
but the chain can slide freely through them. Surrogate net-
works containing slip links have been successful in the pre-
diction of important physical quantities of rubber networks
@59#. In a similar fashion, we investigate the statistical be-
havior of single polymer chains in which a fixed topology is
created by a number of slip links. Suchparaknotscan be
studied analytically using known results for Gaussian ran-
dom walks in the ideal chain limit@3,50,60#. In the language
of graphs, slip-link contacts represent vertices with four out-
going legs, enabling us to make use of a scaling approach to
determine the leading behavior in the presence of self-
avoiding interactions. The paraknot approach thus comple-
ments our previous study offlat knots in which such vertices
correspond to crossings@61#.

In the following section, we start with a brief summary of
conflicting answers to the question of whether the topologi-
cal details in a knotted polymer are localized within a small
portion of the chain, and thus segregated from an unen-
tangled segment. We then introduce the concept of paraknots
to study localization effects for polymers with fixed topol-
ogy. Paraknots are first analyzed for ideal chains in Sec.
III A; various contributions to the joint probability density
function ~PDF! of segment sizes are easily separated in this
case. There is no similar factorization of the PDF for self-
avoiding segments, but, as discussed in Sec. III B, scaling
arguments can be used to infer the limiting behavior of the
PDF as one or more segments contract to small size. The
question of the relative sizes of segments in a paraknot is
taken up in Section IV. By analyzing the behavior of the
unconditional PDF of a particular segment at small sizes we
can infer whether the segment has the tendency to be tight.
Yet, to describe the actual probability of finding a tight seg-
ment, one must consider the competition between all seg-
ments. For example, even in cases where all segments prefer
to be tight per se, a given segment can still have a finite
probability of being loose.

II. FROM KNOTS TO PARAKNOTS

In Fig. 1~a! we depict the projection of a trefoil knot in a

symmetric~bottom! and an asymmetric configuration~top!.
In the latter case, we can introduce a knot region as that part
of the knot which contains all topological details except for
the one larger simply connected segment, as indicated by the
dashed line. Initial indications of tight knotted regions are
implicit in three-dimensional~3D! Monte Carlo simulations
of Janse van Rensburg and Whittington@62#, who studied the
mean extension of the unknot and several knot types up to
six essential crossings. They found that in the scaling form
Rg

2;(A1BL2D)L2n of the gyration radius both the prefactor
A and the exponentn in the leading contribution areinde-
pendentof the knot type@62#. In fact, n was found to be
consistent with the known valuen50.588 of the swelling
exponent of a ring polymer@2,6#. ~The confluent correction
term was estimated to decay withD'1/2.! Conversely, em-
ploying a Flory-type argument under the assumption that the
knot is equallyspread outover the polymer, Quake predicted
that the gyration radius should contain the scaling depen-

denceRg;ÃC1/32nLn on the number of essential crossings
C in the leading order term, i.e., that the amplitude ofRg

decreases with increasing knot complexity@53#. This result
was supported by his numerical study of knots up to 81 @53#,
with a different algorithm from that used in Ref.@62#. Gros-
berg et al. @54# also make use of a Flory-type approach as-
suming that in an evenly delocalized knot the topological
constraints can be replaced by a tube whose radius can be
determined from the aspect ratio of a maximally inflated
state. They obtained similar conclusions to Quake, although
they also remark that thermodynamically a segregation into a
simply connected ring polymer and a dense knot region
might occur@54#. In a later work, Grosberg states that a more
powerful approach is needed to decide theoretically between
the two options@52#. More recent numerical studies seem to
corroborate the independence of the gyration radius of the
knot type in long enough polymers. Thus, in 3D Orlandini
et al. calculate in a Monte Carlo study the number of con-
figurationsvK of different knot typesK, reporting thatvK
;mLLa23 where bothm and a are independent ofK for
prime knots, and that an additional factorLn21 occurs for
composite knots withn prime components@63#. These au-
thors conclude that one or more tight knot regions can move
along the perimeter of a simply connected ring polymer, each
prime component being represented by one knot region@63#.
An analogous result was obtained in 2D by Guitter and Or-
landini @64#. Consistent with these findings, Katritchet al.
obtained that the knot region is tight in 3D with a relatively
high probability@65#. The investigations of Shimamura and
Deguchi @66# corroborate this picture in obtaining that the
gyration radius is independent of the knot type in some limit
of their model.

Why should knots be confined to a small region of the
polymer? Entropic effects give rise to long-range interactions
as we demonstrate for the figure-eight structure sketched in
Fig. 1~b! in which a permanent pair contact is enforced by a
slip link, creating two loops of lengthsl andL2l , which
can freely exchange length. In the ideal chain limit, the two
loops correspond to returning random walks, i.e., the PDF
p(l ) for the sizel becomes@2,67#

FIG. 1. Depiction of the knot region~KR! for ~a! a trefoil knot
and ~b! a figure-eight structure in which a slip link enforces a pair
contact~compare Fig. 2 below!. In both cases, a symmetric and an
asymmetric configuration are shown. The size of the KR is termed
l and the length of the remaining simply connected chain is
L2l .
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pid~ l !}l 2d/2~L2l !2d/2, ~1!

whered is the embedding dimension. The average loop size
^l &5*a

L2adl l p(l ), wherea is a short-distance cutoff set
by the lattice constant, is triviallŷl &5L/2, due to the sym-
metry of the structure. However, as the PDF is strongly
peaked atl 50 and l 5L, a typical shape consists of one
small ~tight! and one large~loose! loop. For instance, ind
53 the mean size of the smaller loop^l &, scales as

^l &,;a1/2L1/2, d53, ~2!

which corresponds toweak localizationin the sense that the
smaller loop still grows withL, but with an exponent smaller
than 1. By comparison, ford.4 one encounterŝl &,;a,
corresponding tostrong localizationas the size of the smaller
loop does not depend onL but is set by the short-distance
cutoff a. On the other hand, ford52 one finds ^l &,

;L/u ln(a/L)u, such that the smaller loop is still rather large.
However, we will see in the next section that this is no longer
true if we include self-avoiding interactions for the chains; in
that case, the localization ford52 is even stronger than for
d53.

Equation~2! shows that the smaller loop, of lengthl , of
the figure-eight structure is indeed tight ind53. In fact, for
flat knots rendered as quasi 2D knot projections, it turns out
that all prime knots become tight, and that their leading scal-
ing behavior corresponds to the figure-eight structure@61#.
This localization is the consequence of a delicate interplay
between competing effects. Statistically, the confinement of
topological details into a localized region of the polymer
chain is favored entropically as then the topological con-
straints act on a small portion of the chain, exclusively, and
the remaining major part has access to all degrees of freedom
of a simply connected ring polymer. This tendency toward
confinement is counteracted by the internal degrees of free-

dom of the knot region in which the substructures can ex-
change length among each other. It turns out that the tradeoff
is in favor of localization.

We propose that slip-link structures grasp some essential
features of the statistical behavior of real knots and therefore
call themparaknots. Some elementary examples of paraknot
structures which will be discussed in the following sections
are displayed in Fig. 2. The slip links in these configurations
can be viewed as little rings which enforce pair contacts
within the chain such that the loop formed by the slip link is
not allowed to fully retract. In a simulation, this latter prop-
erty can be included by a belt buckle shape as sketched in
Fig. 2~d!. In a paraknot, one or several loops may be cut,
creating open chain segments as in Figs. 2~e!–2~g!. Such
‘‘open’’ paraknot types can be stabilized~i.e., an open end
prevented from escaping through a slip link! by attaching
‘‘stoppers’’ to the open ends, such as latex microspheres, ring
molecules, or C60 balls, as known from supramolecular
chemistry@29,30#.

Paraknots are tractable exactly in the ideal chain limit,
and by scaling theories in the self-avoiding domain. In the
following, we investigate the statistical description and the
localization properties of several paraknot structures.

III. STATISTICAL WEIGHTS OF PARAKNOT
STRUCTURES

A general paraknot can be constructed, as shown in Fig. 3,
from an arc diagram similar to those used to classify the
secondary structure of RNA@17,18#. Such an arc diagram is
the blueprint of the associated paraknot, and it features the
original loop into which slip links are introduced by connect-
ing pairs of monomers through the dashed lines. To simplify
the analysis, we consider only paraknots with unconcat-
enated loops, i.e., the arcs are not allowed to intersect each
other. In the RNA language, this means that pseudoknots are

FIG. 2. A collection of different paraknots discussed in the text.~a! The figure-eight paraknot is formed by placing a slip link on a ring
polymer.~b! The next higher order paraknot with two slip links.~c! The figure-eight paraknot with two additional sliding rings, one on each
separated loop.~d! Visualization of a slip link: the belt buckle shape allows the chain to slide freely through the slip link without retracting
entirely. The lower part corresponds to the view from the right as indicated by the arrow.~e! The lowest order open paraknot.~f! Open
paraknot with two slip links.~g! Topologically different configuration with two slip links.~h! Paraknot necklace with three slip links.
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not permitted@17,18#. With this restriction, the joint PDF for
the sizes of various segments simplifies to a product of con-
tributions from loops, in the case of ideal~Gaussian! poly-
mers. As discussed next, in the case of self-avoiding walks,
only scaling information is available in the limit when seg-
ments contract to small sizes.

A. Ideal chains

For ideal chains, analytical calculations are rather
straightforward for noncrossing arc diagrams~similar to Har-
tree graphs!. For instance, consider the paraknot shown in
Fig. 3 for fixed loop lengthsl 1 , . . . ,l 5. The key observa-
tion is that for ideal chains the degrees of freedom associated
with the individual loops are decoupled from one another, so
that the PDF of the paraknot factorizes into the correspond-
ing loop contributions. Following the above example, a gen-
eral paraknot P can be described by the set
$l 1 ,l 2 , . . . ,l m% of individual loop lengths~also including
end-to-end lengths in the case of linear segments! under the
constraintL5( i l i , where the contributions from the indi-
vidual loops~or linear segments! factorize. In equilibrium,
these lengths are thus distributed according to the joint PDF

pP~ l 1 ,l 2 , . . . ,l m!}dS L2(
i 51

m

l i D)
i 51

m

l i
2u i , ~3!

where the exponentsu i are constructed from the following
contributions@68#.

(i) Connectivity factor. This factor accounts for the con-
figurational entropy of a given loop~or linear segment! of
lengthl . For a loop, the connectivity factor follows from the
return probability of a Gaussian random walk, which is
;l 2d/2. The absence of any constraint for a linear segment
corresponds to a factor;l 0.

(ii) Sliding entropy. A given loop ~or linear segment! of
length l has additional degrees of freedom associated with
the slip links that slide on it. This is due to the relative
motion of these slip links along the segment. The presence of
n slip links on a loop~or linear segment! thus leads to a
factor of l n21/(n21)! ~or l n/n!). Additional degrees of
freedom in the form of sliding rings confined to a given
segment as depicted in Fig. 2~c! enter the PDF analogously.

(iii) Energetic factors. If an external force is applied to the
paraknot, a Boltzmann weight enters the expression for the
size distribution. For instance, if an open paraknot is pulled
with a constant forcef, this weight corresponds to the aver-
ageexp$bf•r%5exp$b2f2r2/(2d)% where the overbar indicates
the average over all end-to-end distancesr of the backbone
segment, andb[1/(kBT). ~Such effects will be relegated to
future work @69#.!

B. Self-avoiding chains

If self-avoiding constraints for the chains are included, the
above reasoning for ideal chains, in particular the factoriza-
tion of the PDF, is no longer valid in general since now every
loop or segment of the paraknot interacts with all the others.
However, progress can be made, allowing for quantitative
predictions of the leading scaling behavior of a given para-
knot, by employing the scaling theory for self-avoiding poly-
mer networks developed by Duplantier@70#, Schäfer et al.
@71#, and Ohno and Binder@72#. This approach has recently
been applied to the study of DNA denaturalization by Kafri
et al. @20,21# and to the study of 2D knots@61#.

A general polymer networkG like the one depicted in Fig.
4 consists of a number of vertices which are joined byN
chain segments of individual lengthss1 , . . . ,sN whose total
length isL5( i 51

N si . The number of configurations of such a
network scales as@70–72#

FIG. 3. ~a! Arc diagram for the construction of a closed paraknot
from a polymer ring~full line!. The dotted lines indicate which
points of the chain are connected to each other by slip links.~b! The
paraknot resulting from this procedure.~c! Open paraknot obtained
by cutting loop 5, creating two open legs. Note that individual con-
nectors~dashed lines! are not allowed to intersect each other, i.e.,
the paraknot contains unconcatenated loops.

FIG. 4. Polymer networkG with vertices (d) of different order
(n155,n354,n453,n551).
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vG;mLsN
gG21YGS s1

sN
, . . . ,

sN21

sN
D , ~4!

where m is the effective connectivity constant for self-
avoiding walks andYG is a scaling function. The topology of
the network is reflected in the exponent

gG512dnL1 (
N>1

nNsN , ~5!

whereL5(N>1(N22)nN/211 is the number of indepen-
dent loops,nN is the number of vertices withN legs, andsN
is an exponent connected to anN-vertex. The PDF of the
paraknot then follows from the number of configurationsvG
by normalization with respect to the variable segment
lengths.

(i) Connectivity factor. To illustrate how the connectivity
factors~of the form;l 2d/2 and;l 0 for closed loops and
linear segments in the Gaussian case! are modified, let us
consider the cases of the figure-eight paraknot@Fig. 2~a!#,
and its open counterpart@Fig. 2~e!#.

The figure-eight paraknot corresponds to a network with
two loops of lengthsl andL2l , respectively, and one ver-
tex with four legs. We thus obtain

v8;mL~L2l !22dn1s4Y8S l

L2l
D ~6!

for the configuration number. Now we use thea priori as-
sumption thatL2l @l . Then, the large loop should behave
like a ring polymer of lengthL2l , i.e., it should contribute
to vG in the scaling form (L2l )2dn @20#. This can only be
fulfilled if the scaling function behaves likeY8(x);x2c with
c5dn2s4. The final result for the number of configuration
of the self-avoiding figure-eight paraknot then becomes

v8;mL~L2l !2dnl 2dn1s4. ~7!

In d52, with n53/4 ands45219/16@20,70,71#, we there-
fore find that the small loop scales likel 2c where c
52.6875. Ind53, we obtain the exponentc'2.24 usingn
50.588 ands4'20.46 @20,70,71,73#. The strong localiza-
tion that obtains for bothd52 andd53 is thea posteriori
justification of theL2l @l assumption, and the procedure
is therefore self-consistent. Note that in the presence of self-
avoiding constraints the localization is stronger in 2D than in
3D, in contrast with the ideal chain case~see Sec. II!.

We performed a Monte Carlo analysis of the elementary
slip link in 2D with a standard bead-and-tether chain. In Fig.
5~a!, we show the equilibration of a symmetric initial con-
figuration and its fluctuations as a function of Monte Carlo
steps. Clearly, the separation into two length scales is fast
and fluctuations are relatively small. The size distribution of
the small loop is displayed in Fig. 5~b!. From the plot, we
realize that the scaling behavior is surprisingly well fulfilled,
and that the predicted value is reproduced in good agree-
ment. This result was corroborated experimentally for a
figure-eight necklace chain on a vibrating plate@74#.

Compare this finding to the lowest order open paraknot
~o! sketched in Fig. 2~e!. Apart from the vertex with four
legs, there are two vertices with one leg, one for each of the
two ends of the linear chain segment, thus yielding

vo;mL~L2l !12dn12s11s4YoS l

L2l
D . ~8!

We again assumea priori that the open chain segment is the
overall dominating structure of sizeL2l . It thus enters into
vo in the form (L2l )g whereg52s111 is the configura-
tion exponent@50,70,75#, which implies

FIG. 5. Monte Carlo simulation of a figure-eight paraknot in 2D.~a! Loop sizesl andL2l as a function of Monte Carlo steps for 256
monomers. In the inset, a typical equilibrium configuration is shown. The slip link is made up of the three tethered beads rendered black
which constitute the 2D version of the belt buckle shape depicted in Fig. 2~d!. ~b! Probability density for the sizel of the smaller loop for
a figure eight with 512 monomers. The inset shows an intermediate configuration reminiscent of the symmetric initial condition.
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vo;mL~L2l !gl 2dn1s4. ~9!

Thus, we find the same loop closure exponent as for the
figure-eight structure above@see Eq.~7!#. This is not surpris-
ing, as the small loop is statistically independent of the large
structure; in other words, the topological exponents4 stems
from the nature of the vertex, which is alocal quantity.

The closure factor for a loop in such simple geometries as
the figure-eight or the lowest order open paraknot is there-
fore given by;l 2dn1s4; the factor for the degrees of free-
dom of the linear chain segment in the latter enters as;(L
2l )g.

(ii) Sliding entropy. Consider the paraknot shown in Fig.
3~b!. It constitutes a polymer networkG in which four
4-vertices~corresponding to the slip links! are joined by a
number of chain segmentssi with l 15s1 , l 55s5,11s5,2,
etc. Since the loops are nonconcatenated, it is possible to
integrate the right hand side of Eq.~4! for fixed loop lengths
l 1 , . . . ,l 5 over some of the segment lengthssi in such a
way that the resulting expression depends on the loop lengths
only, i.e.,

vG
(l );mLl 1

gG21
l 4

2l 5XGS l 1

l 5
, . . . ,

l 4

l 5
D , ~10!

where the scaling functionXG depends on ratios of loop
lengths~again, this procedure would not be possible if the
paraknot contained concatenated loops!. The superscript (l )
on vG indicates that here the loop lengthsl 1 , . . . ,l 5 are
fixed. The factors ofl 4

2 and l 5 in the above expression
correspond to the sliding entropy already encountered for
ideal chains@see~ii ! in Sec. III A#.

IV. TIGHT OR LOOSE

When is a certain segment of such a paraknot network
tight? A priori, this can be investigated by integration of the
joint PDF over all other segments. The result depends on
both the local property of the segment itself, i.e., on its ex-
ponent in the joint size distribution, and its global interplay
with other segments in the paraknot in their cooperative
search for the entropically favored configuration. In practice,
the unconditional PDF can only be obtained for Gaussian
paraknots in which the joint PDF has the multiplicative form
in Eq. ~3!. Such calculations are not possible for general
self-avoiding paraknots, as the unconditional PDF comes out
from the specific scaling analysis for a given paraknot con-
figuration. We therefore address phantom and self-avoiding
cases separately.

A. Ideal chains

Consider the joint PDF in Eq.~3! for a given paraknotP
with N segments. According to the previous section, the ex-
ponentsu i in Eq. ~3! are given byu i5d/22(ni21) if l i is
a loop or byu i52ni if it is a linear segment, whereni is the
number of slip links and sliding rings connected to this seg-
ment. From Eq.~3!, we consider a segment to be looseper se

if its exponentu i<1, otherwise it is tight~and ‘‘supertight’’
if u i.2). We can now distinguish between three different
global situations.

~i! There is one loose segment and all others are tight.
This case occurs if inP only one segment withuN<1 exists,
while all others haveu i.1.

~ii ! There is more than one loose segment and possibly
some tight segments. In this case, the loose segments com-
pete for the lengthL. On the average, if there areM loose
segments, the characteristic length of any specific segment is
^l j&5@(12u j )/( i 51

M (12u i)#L, which is always larger than
0 and smaller thanL. The ratio of characteristic lengths for a
pair of segmentsj ,k is then given by ^l j&:^l k&5(1
2u j ):(12uk) @76#.

~iii ! All segments are tightper sein the sense that allu i
.1. In this case, a symmetry breaking occurs and one seg-
ment becomes large. The unconditional PDF for each seg-
ment will have two peaks corresponding to tight or loose
configurations.

In a paraknot which contains one or multiple open seg-
ments, the open segments are always loose and therefore
only cases~i! and~ii ! can arise: Depending on the exponents
of the closed loops in such a structure, these loops may be
either loose or tight. Note that cases~i! and ~iii ! exhibit one
large loop; in~i! this is the loose segment and in~iii ! it is the
one segment that becomes large by symmetry breaking. As
all other segments of paraknots that belong to these classes
are tight, the gyration radius of such paraknots is, to leading
order, the same as for an unknot of lengthL. For paraknots
belonging to class~ii !, segments of comparable size make up
the gyration radius. Depending on the details of the structure,
the gyration radius should be given by similar expressions to
those developed in Refs.@6,53#. Thus, the gyration radius
decreases with increasing number of loose segments.

B. Self-avoiding chains

As mentioned, generalizing the previous classification to
self-avoiding structures is not straightforward. Let us there-

FIG. 6. Arc diagram for~a! the round table configuration with
n53 fringe loops, and~b! the necklace paraknot.
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fore consider the tightness of segments in a self-avoiding
paraknot by means of three examples.

1. The round-table configuration

This configuration corresponds to arc diagrams in which
none of the connecting arcs is located inside another arc, as
shown in Fig. 6~a!. The resulting paraknot features a number
n of loops located at the fringe of a central loop, as depicted
to lowest order in Fig. 2~b!. As the loops are independent and
are connected to one slip link each, they enter the joint PDF
of loop sizes through the loop closure factor;l i

2dn1s4 as
was found for the figure-eight paraknot. They are therefore
supertight for self-avoiding chains. Conversely, the central
loop has access to additional degrees of freedom stemming
from the relative motion of the slip links along its circumfer-
ence such that its exponent becomesu5dn2(n21). Note
that in 2D, the round table configuration corresponds to the
leading order behavior of a composite knot@61#. Each fringe
loop, that is, corresponds to a prime component. The addi-
tional degrees of freedom coming about by the relative mo-
tion of the fringe loops in this configuration correspond to
the enhancement of accessible numbers of configurations for
knotted chains as measured by Orlandiniet al. @63,64#.

2. The figure-eight cactus with attached loops

Consider a figure-eight paraknot in whichn andm addi-
tional ~external! loops are attached to the two loops@compare
Fig. 3~b! in which n52 andm51#. The external loops are
all strongly localized and give rise to additional sliding en-
tropy for the figure-eight loops; by choosing different values
for n and m, one obtains various localization properties for
the figure-eight loops. For instance, forn52 and m
51, l 4 is loose andl 5 is weakly localized; forn,m>2,
both l 4 and l 5 are loose, i.e., proportional toL, so that the
gyration radius of the paraknot is smaller than for a simple
ring of the same lengthL. In this case, the joint PDF does not
factorize, but the scaling functionY8 from Eq. ~6! enters.
Depending on the details of the structure, the gyration radius
should be given by similar expressions as developed in Refs.
@6,53#. Note that analogous loosening of loops can be
achieved for open paraknots of the type sketched in Fig.
2~g!.

3. The necklace

Finally, let us explore the necklace structure from Fig.
2~h! whose corresponding arc diagram is shown in Fig. 6~b!.
In this configuration, the two end loops are strongly local-
ized; the otherm5n22 inner loops have two neighbors. By
necessity, one of the inner loops has to be loose~sizeL), and
has sliding entropy with weight;L12dn. On each side of the
large loop there is a number of other inner loops, arranged in
a hierarchy of shapes of the type .oOoo.~. 5 strongly local-
ized end loop, o5 weakly localized loop, O5 large inner
loop!, statistically changing to .oooO., etc. If one focuses on
one particular inner loop, there is a 1/m chance to find this
loop large with the~integrated! PDF ;L12dn. Note that a
complete analysis of this relatively simple and symmetric
structure is already quite nontrivial.

The necklace structure can be closed by an additional slip
link connecting the two outer loops. This forms a symmetric
configuration in which all loops area priori equivalent. This
paraknot is equal to the network studied for flat prime knots
in Ref. @61#. Accordingly, the closed necklace structure is, to
leading order, contracted to the figure-eight paraknot in both
2D and 3D.

V. CONCLUSIONS

We have presented a systematic study of slip-link struc-
tures which we call paraknots. Paraknots are relatively easy
to deal with analytically and may provide information on the
generic interplay between entropy and fixed topology in
polymer chains and networks.

Paraknots composed of ideal chains are described by
Gaussian propagators for which calculations are reasonably
straightforward. Simple paraknots in 2D and 3D are only
marginally or weakly localized whereas localization is strong
in higher dimensions. More complicated paraknots in which
individual loops are connected to more than one slip link
show less localization due to the additional degrees of free-
dom brought about by the relative motion of the slip links or
additional sliding rings on a loop. If self-avoiding effects are
considered, simple paraknots are strongly localized even in
2D and 3D. The scaling exponents involved can be obtained
from Duplantier’s theory for general polymer networks. For
the figure-eight paraknot, we have confirmed the scaling ex-
ponent through Monte Carlo simulations. Localization in
self-avoiding paraknots becomes weakened if more than one
substructure has additional degrees of freedom, in analogy to
the ideal chain case. This observation pertains to arbitrary
topological polymer networks.

The tightness of paraknots in 2D quantifies the strong
localization for flat knots observed by Guitter and Orlandini
@64#. Whereas we cannot infer definitive statements on 3D
knots from our analysis, the correspondence between figure-
eight paraknot and the leading order behavior of prime knots
~and between the round table configuration and composite
knots! in 2D suggests that similar tightness could be ob-
served in 3D as well. This is consistent with the findings of
Janse van Rensburg and Whittington@62#, Orlandini et al.
@63#, and Katritchet al. @65#, and it differs from the conclu-
sions of Quake@53#.

Additional energetic effects due to bending and the pres-
ence of ~screened! electric charges are relevant for many
systems, especially in biology. In so far as these effects can
be accommodated by the introduction of a persistence length,
they should not affect our results in the long-chain limit.
However, they determine the crossover size for the onset of
the long-chain limit in the polymer. For the particular case of
the 2D trefoil knot the results of our previous analysis sug-
gest that the continuum limit is reached for chains with 512
monomers, whereas for the figure-eight paraknot even chain
lengths of 128 seem to be sufficient. Thus, in a DNA double
helix for which the persistence length is of the order of 100
base pairs~bp!, one may expect to see localization behaviors
in simpletopologically entangled states for strand lengths of
the order of 10 to 50 kbp, corresponding to a length of 5 to
25 mm @77#. For shorter DNA strands, it is to be expected
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that finite size effects prevail, and thus the knots or other
topological details will be spread out over a considerably
larger part of the entire chain.
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