1,708 research outputs found

    Single-case experimental designs for behavioral neuroscience

    Get PDF
    Single-case experimental designs (SCEDs) are commonly used in behavior analytic research but rarely used in behavioral neuroscience research. The recent development of technologies that allow control of the timing of neurobiological events such as gene expression and neuronal firing enable the fruitful application of SCEDs for the study of brain-behavior relations. There are at least 3 benefits expected from applying SCEDs to study how neurobiological events affect behavior. First, SCEDs entail direct within- and across-subject assessments of reliability, likely increasing the probability of replication across studies and encouraging a search for the causes of replication failure when they occur. Second, SCEDs focus on behavior in individual organisms producing a body of knowledge that applies to individuals rather than population parameters. Finally, SCEDs require fewer animals, decreasing costs and effort and addressing the ethical obligation to reduce the number of animals used for research. Examples are provided using hypothetical data generated based on published research. Collaborations between behavior analysts and behavioral neuroscientists will bring the world within the skin under direct experimental control and broaden our understanding of the determinants of behavior

    Using complex behavior to understand brain mechanisms in health and disease

    Get PDF
    At this point in the history of the science of behavior, a focus on neuroscience-based outcomes has become dominant in neuropsychiatric fields at the preclinical and clinical levels of analysis. The notion that behavior is caused by brain function, and that changing brain function can alter behavior, has fueled this push to understand these neurobiological mechanisms. Within this conceptual framework and the funding to incentivize its adoption, the neuroscience field grew rapidly with the goal to understand the relation between the brain and behavior. As such, a reductionist perspective emerged whereby neural manipulations of increasing sophistication became required for assessing the necessity and sufficiency of a particular brain mechanism’s role in behavior (Krakauer et al., 2017). Yet, despite the amazing advances in neuroscience, some, such as the former director of the National Institute of Mental Health, Dr. Thomas Insel, have noted the lack of progress in treatment outcomes for mental illness following the shift in funding from behavioral research to genetics and neuroscience research (Barry, 2022)

    An efficient triose phosphate synthesis and distribution in wheat provides tolerance to higher field temperature

    Get PDF
    High temperatures in the field hinder bread wheat high yield production, mainly because of the adverse effects of heat over photosynthesis. The Yaqui Valley, the main wheat producer region in Mexico, is a zone prone to have temperatures over 30 °C. The aim of this work was to test the flag leaf photosynthetic performance in ten bread wheat genotypes grown under high temperatures in the field. The study took place during two seasons (2019-2020 and 2020-2021). In each season, control seeds were sown in December, while heat-stressed were sown in late January to subject wheat to heat stress (HS) during the grain filling stage. HS reduced Grain yield from 20 to 58 % in the first season. HS did not reduce chlorophyll content and light-dependent reactions were unaffected in any of the tested genotypes. Rubisco, chloroplast fructose 1,6-biphosphatase (FBPase), and sucrose phosphate synthase (SPS) activities were measured spectrophotometrically. Rubisco activity did not decrease under HS in any of the genotypes. FBPase activity was reduced by HS indicating that triose phosphate flux to starch synthesis was reduced, while SPS was not affected, and thus, sucrose synthesis was maintained. HS reduced aerial biomass in the ten chosen genotypes. Genotypes SOKWB.1, SOKWB.3, and BORLAUG100 maintained their yield under HS, pointing to a potential success in their introduction in this region for breeding heat-tolerant bread wheat

    Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts

    Get PDF
    International audienceOver the last few decades, symbiosis and the concept of holobiont—a host entity with a population of symbionts—have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (10 2 to 10 3 times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned

    The osteoarthritis prevention study (TOPS) - A randomized controlled trial of diet and exercise to prevent Knee Osteoarthritis:Design and rationale

    Get PDF
    Background: Osteoarthritis (OA), the leading cause of disability among adults, has no cure and is associated with significant comorbidities. The premise of this randomized clinical trial is that, in a population at risk, a 48-month program of dietary weight loss and exercise will result in less incident structural knee OA compared to control. Methods/design: The Osteoarthritis Prevention Study (TOPS) is a Phase III, assessor-blinded, 48-month, parallel 2 arm, multicenter randomized clinical trial designed to reduce the incidence of structural knee OA. The study objective is to assess the effects of a dietary weight loss, exercise, and weight-loss maintenance program in preventing the development of structural knee OA in females at risk for the disease. TOPS will recruit 1230 ambulatory, community dwelling females with obesity (Body Mass Index (BMI) ​≥ ​30 ​kg/m2) and aged ≥50 years with no radiographic (Kellgren-Lawrence grade ≤1) and no magnetic resonance imaging (MRI) evidence of OA in the eligible knee, with no or infrequent knee pain. Incident structural knee OA (defined as tibiofemoral and/or patellofemoral OA on MRI) assessed at 48-months from intervention initiation using the MRI Osteoarthritis Knee Score (MOAKS) is the primary outcome. Secondary outcomes include knee pain, 6-min walk distance, health-related quality of life, knee joint loading during gait, inflammatory biomarkers, and self-efficacy. Cost effectiveness and budgetary impact analyses will determine the value and affordability of this intervention. Discussion: This study will assess the efficacy and cost effectiveness of a dietary weight loss, exercise, and weight-loss maintenance program designed to reduce incident knee OA.Trial registration: ClinicalTrials.gov Identifier: NCT05946044.</p

    Non-random distribution of deleterious mutations in the DNA and protein-binding domains of IRF6 are associated with Van Der Woude syndrome

    Get PDF
    Background: The development of the face occurs during the early days of intrauterine life by the formation of facial processes from the first Pharyngeal arch. Derangement in these well-organized fusion events results in Orofacial clefts (OFC). Van der Woude syndrome (VWS) is one of the most common causes of syndromic cleft lip and/or palate accounting for 2% of all cases. Mutations in the IRF6 gene account for 70% of cases with the majority of these mutations located in the DNA-binding (exon 3, 4) or protein-binding domains (exon 7-9). The current study was designed to update the list of IRF6 variants reported for VWS by compiling all the published mutations from 2013 to date as well as including the previously unreported VWS cases from Africa and Puerto Rico.Methods: We used PubMed with the search terms; "Van der Woude syndrome," "Popliteal pterygium syndrome," "IRF6," and "Orofacial cleft" to identify eligible studies. We compiled the CADD score for all the mutations to determine the percentage of deleterious variants.Results: Twenty-one new mutations were identified from nine papers. The majority of these mutations were in exon 4. Mutations in exon 3 and 4 had CADD scores between 20 and 30 and mutations in exon 7-9 had CADD scores between 30 and 40. The presence of higher CADD scores in the protein-binding domain (exon 7-9) further confirms the crucial role played by this domain in the function of IRF6. In the new cases, we identified five IRF6 mutations, three novel missense mutations (p.Phe36Tyr, p.Lys109Thr, and p.Gln438Leu), and two previously reported nonsense mutations (p.Ser424*and p.Arg250*).Conclusion: Mutations in the protein and DNA-binding domains of IRF6 ranked among the top 0.1% and 1% most deleterious genetic mutations, respectively. Overall, these findings expand the range of VWS mutations and are important for diagnostic and counseling purposes.</p

    Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC Technical Report)

    Get PDF
    Stable hydrogen, carbon, nitrogen, oxygen and sulfur (HCNOS) isotope compositions expressed as isotope-delta values are typically reported relative to international standards such as Vienna Standard Mean Ocean Water (VSMOW), Vienna Peedee belemnite (VPDB) or Vienna Cañon Diablo Troilite (VCDT). These international standards are chosen by convention and the calibration methods used to realise them in practice undergo occasional changes. To ensure longevity and reusability of published data, a comprehensive description of (1) analytical procedure, (2) traceability, (3) data processing, and (4) uncertainty evaluation is required. Following earlier International Union of Pure and Applied Chemistry documents on terminology and notations, this paper proposes minimum requirements for publishing HCNOS stable-isotope delta results. Each of the requirements are presented with illustrative example
    corecore