112 research outputs found

    Investigation of a Magnet Falling Through a Copper Pipe

    Get PDF
    The goal of this research is to explore the effects of wall thickness and temperature on the rate at which a magnet falls through a copper pipe. A magnet is not attracted to copper. Copper is not magnetic; however, it is a great conductor of electricity. Due to Faraday’s law and Lenz’s law, we know that a changing magnetic flux will produce an electric current that opposes the change in magnetic flux that produced it. These laws together explain why a magnet will fall slowly in a copper pipe even though it is not attracted

    Context-dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host

    Get PDF
    Disease acts as a powerful driver of evolution in natural host populations, yet individuals in a population often vary in their susceptibility to infection. Energetic trade-offs between immune and reproductive investment lead to the evolution of distinct life history strategies, driven by the relative fitness costs and benefits of resisting infection. However, examples quantifying the cost of resistance outside of the laboratory are rare. Here, we observe two distinct forms of resistance to bovine tuberculosis (bTB), an important zoonotic pathogen, in a free-ranging African buffalo (Syncerus caffer) population. We characterize these phenotypes as “infection resistance,” in which hosts delay or prevent infection, and “proliferation resistance,” in which the host limits the spread of lesions caused by the pathogen after infection has occurred. We found weak evidence that infection resistance to bTB may be heritable in this buffalo population (h2 = 0.10) and comes at the cost of reduced body condition and marginally reduced survival once infected, but also associates with an overall higher reproductive rate. Infection-resistant animals thus appear to follow a “fast” pace-of-life syndrome, in that they reproduce more quickly but die upon infection. In contrast, proliferation resistance had no apparent costs and was associated with measures of positive host health—such as having a higher body condition and reproductive rate. This study quantifies striking phenotypic variation in pathogen resistance and provides evidence for a link between life history variation and a disease resistance trait in a wild mammalian host population

    Workflow for the generation of expert-derived training and validation data: a view to global scale habitat mapping

    Get PDF
    Our ability to completely and repeatedly map natural environments at a global scale have increased significantly over the past decade. These advances are from delivery of a range of on-line global satellite image archives and global-scale processing capabilities, along with improved spatial and temporal resolution satellite imagery. The ability to accurately train and validate these global scale-mapping programs from what we will call “reference data sets” is challenging due to a lack of coordinated financial and personnel resourcing, and standardized methods to collate reference datasets at global spatial extents. Here, we present an expert-driven approach for generating training and validation data on a global scale, with the view to mapping the world’s coral reefs. Global reefs were first stratified into approximate biogeographic regions, then per region reference data sets were compiled that include existing point data or maps at various levels of accuracy. These reference data sets were compiled from new field surveys, literature review of published surveys, and from individually sourced contributions from the coral reef monitoring and management agencies. Reference data were overlaid on high spatial resolution satellite image mosaics (3.7 m × 3.7 m pixels; Planet Dove) for each region. Additionally, thirty to forty satellite image tiles; 20 km × 20 km) were selected for which reference data and/or expert knowledge was available and which covered a representative range of habitats. The satellite image tiles were segmented into interpretable groups of pixels which were manually labeled with a mapping category via expert interpretation. The labeled segments were used to generate points to train the mapping models, and to validate or assess accuracy. The workflow for desktop reference data creation that we present expands and up-scales traditional approaches of expert-driven interpretation for both manual habitat mapping and map training/validation. We apply the reference data creation methods in the context of global coral reef mapping, though our approach is broadly applicable to any environment. Transparent processes for training and validation are critical for usability as big data provide more opportunities for managers and scientists to use global mapping products for science and conservation of vulnerable and rapidly changing ecosystems

    Investigation of the use of a sensor bracelet for the presymptomatic detection of changes in physiological parameters related to COVID-19: an interim analysis of a prospective cohort study (COVI-GAPP).

    Get PDF
    OBJECTIVES We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device. DESIGN Interim analysis of a prospective cohort study. SETTING, PARTICIPANTS AND INTERVENTIONS Participants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. RESULTS A total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO. CONCLUSION Wearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial. Trial registration number ISRCTN51255782; Pre-results

    Microbiota that affect risk for shigellosis in children in low-income countries

    Get PDF
    Pathogens in the gastrointestinal tract exist within a vast population of microbes. We examined associations between pathogens and composition of gut microbiota as they relate to Shigella spp./enteroinvasive Escherichia coli infection. We analyzed 3,035 stool specimens (1,735 nondiarrheal and 1,300 moderate-to-severe diarrheal) from the Global Enteric Multicenter Study for 9 enteropathogens. Diarrheal specimens had a higher number of enteropathogens (diarrheal mean 1.4, nondiarrheal mean 0.95; p<0.0001). Rotavirus showed a negative association with Shigella spp. in cases of diarrhea (odds ratio 0.31, 95% CI 0.17–0.55) and had a large combined effect on moderate-to-severe diarrhea (odds ratio 29, 95% CI 3.8–220). In 4 Lactobacillus taxa identified by 16S rRNA gene sequencing, the association between pathogen and disease was decreased, which is consistent with the possibility that Lactobacillus spp. are protective against Shigella spp.–induced diarrhea. Bacterial diversity of gut microbiota was associated with diarrhea status, not high levels of the Shigella spp. ipaH gene.publishedVersio

    Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants

    Get PDF
    We report a discovery that perfunctionalized icosahedral dodecaborate clusters of the type B_(12)(OCH_2Ar)_(12) (Ar = Ph or C_6F_5) can undergo photo-excitation with visible light, leading to a new class of metal-free photooxidants. Excitation in these species occurs as a result of the charge transfer between low-lying orbitals located on the benzyl substituents and an unoccupied orbital delocalized throughout the boron cluster core. Here we show how these species, photo-excited with a benchtop blue LED source, can exhibit excited-state reduction potentials as high as 3 V and can participate in electron-transfer processes with a broad range of styrene monomers, initiating their polymerization. Initiation is observed in cases of both electron-rich and electron-deficient styrene monomers at cluster loadings as low as 0.005 mol%. Furthermore, photo-excitation of B_(12)(OCH_2C_6F_5)_(12) in the presence of a less activated olefin such as isobutylene results in the production of highly branched poly(isobutylene). This work introduces a new class of air-stable, metal-free photo-redox reagents capable of mediating chemical transformations

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Sex-specific differences in physiological parameters related to SARS-CoV-2 infections among a national cohort (COVI-GAPP study)

    Get PDF
    Considering sex as a biological variable in modern digital health solutions, we investigated sex-specific differences in the trajectory of four physiological parameters across a COVID-19 infection. A wearable medical device measured breathing rate, heart rate, heart rate variability, and wrist skin temperature in 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] females). Participants reported daily symptoms and con-founders in a complementary app. A machine learning algorithm retrospectively ingested daily biophysical parameters to detect COVID-19 infections. COVID-19 serology samples were collected from all participants at baseline and follow-up. We analysed potential sex-specific differences in physiology and antibody titres using multilevel modelling and t-tests. Over 1.5 million hours of physiological data were recorded. During the symptomatic period of infection, men demonstrated larger increases in skin temperature, breathing rate, and heart rate as well as larger decreases in heart rate variability than women. The COVID-19 infection detection algorithm performed similarly well for men and women. Our study belongs to the first research to provide evidence for differential physiological responses to COVID-19 between females and males, highlighting the potential of wearable technology to inform future precision medicine approaches

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    • 

    corecore