University of Northern Iowa

UNI ScholarWorks

Summer Undergraduate Research Program (SURP) Symposium

2023 Summer Undergraduate Research Program (SURP) Symposium

Jul 28th, 11:00 AM - 1:30 PM

Investigation of a Magnet Falling Through a Copper Pipe

Brianna Williams University of Northern Iowa

Paul M. Shand University of Northern Iowa

Let us know how access to this document benefits you

Copyright ©2023 Brianna Williams and Paul Shand Follow this and additional works at: https://scholarworks.uni.edu/surp

Recommended Citation

Williams, Brianna and Shand, Paul M., "Investigation of a Magnet Falling Through a Copper Pipe" (2023). *Summer Undergraduate Research Program (SURP) Symposium*. 4. https://scholarworks.uni.edu/surp/2023/all/4

This Open Access Poster Presentation is brought to you for free and open access by the CHAS Conferences/Events at UNI ScholarWorks. It has been accepted for inclusion in Summer Undergraduate Research Program (SURP) Symposium by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Investigation of a Magnet Falling Through a Copper Pipe **Brianna Williams and Paul Shand**

Introduction

- The goal of this research is to explore the effects of wall thickness and temperature on the rate at which a magnet falls through a copper pipe.
- A magnet is not attracted to copper. Copper is not magnetic; however, it is a great conductor of electricity. • Due to Faraday's law and Lenz's law, we know that a changing magnetic flux will produce an electric current that opposes the change in magnetic flux that produced it. These laws together explain why a magnet will fall slowly in a copper pipe even though it is not attracted.

Motivation

- We are interested in the factors that affect the rate at which a magnet falls through a electrically conductive pipe. • We are interested in how well the existing theory describes the actual fall of a magnet through a conductive pipe.

Methods

- We used two copper pipes: 1.89 mm & 1.04 mm thickness.
- We used two stacked magnets with total mass of 25.4 g and dimensions of 12.68 mm x 25.42 mm.
- We wrapped two coils identically to fit around the middle of the copper pipe; held the pipe with a ring stand and clamps, and connected the coils to a voltmeter. • To cool the pipe, we placed liquid nitrogen in a styrofoam
- cup below the coils.

Department of Physics and University of Northern Iowa, Cedar Falls, IA 50614

Thickness of pipe: 1.89 mm Temperature of pipe: 22.1°C Velocity of magnet: 0.137 m/s

 $\epsilon_{1} = Nv(2\pi a) \left(\frac{3\mu zc}{(a^{2}+z^{2})^{5/2}} \right)$ kv,=mg

k∝*σt*

- parameter (k), resulting in a smaller v_{4} as observed.
- therefore v_{\downarrow} decreases, as observed.

Future Work

- the rate at which the magnet falls.
- Investigate additional pipe thicknesses and different pipe materials to obtain more quantitative results.
- Investigate the effect of different magnet shapes.

References

G. Donoso, C. L. Ladera, and P. Martin, Eur. J. Phys. 30, 855 (2009)

Acknowledgements

Funding provided by the National Science Foundation Grant No. DMR 2003828

• This equation was used to fit the data.

• When the magnet reaches terminal velocity (v_{t}) , the resistive force due to Lenz's law becomes equal to the weight of the magnet. • The drag parameter obeys this equation. • $k = \text{drag parameter } \sigma = \text{conductivity } t = \text{thickness.}$ • For a fixed conductivity, if *t* increases, then so does the drag • When the tube is cooled, σ increases, so k increases, and

• Improve the design to investigate the effect of temperature on