35 research outputs found

    Succinylcholine versus rocuronium for rapid sequence intubation in intensive care: a prospective, randomized controlled trial

    Get PDF
    Succinylcholine and rocuronium are widely used to facilitate rapid sequence induction (RSI) intubation in intensive care. Concerns relate to the side effects of succinylcholine and to slower onset and inferior intubation conditions associated with rocuronium. So far, succinylcholine and rocuronium have not been compared in an adequately powered randomized trial in intensive care. Accordingly, the aim of the present study was to compare the incidence of hypoxemia after rocuronium or succinylcholine in critically ill patients requiring an emergent RSI

    Improving diagnosis of pneumococcal disease by multiparameter testing and micro/nanotechnologies

    Get PDF
    The diagnosis and management of pneumococcal disease remains challenging, in particular in children who often are asymptomatic carriers, and in low-income countries with a high morbidity and mortality from febrile illnesses where the broad range of bacterial, viral and parasitic cases are in contrast to limited, diagnostic resources. Integration of multiple markers into a single, rapid test is desirable in such situations. Likewise, the development of multiparameter tests for relevant arrays of pathogens is important to avoid overtreatment of febrile syndromes with antibiotics. Miniaturization of tests through use of micro- and nanotechnologies combines several advantages: miniaturization reduces sample requirements, reduces the use of consumables and reagents leading to a reduction in costs, facilitates parallelization, enables point-of-care use of diagnostic equipment and even reduces the amount of potentially infectious disposables, characteristics that are highly desirable in most healthcare settings. This critical review emphasizes our vision on the importance of multiparametric testing for diagnosing pneumococcal infections in patients with fever and examines recent relevant developments in micro/nanotechnologies to achieve this goal

    Scanning electrochemical microscopy as a local probe of oxygen permeability in cartilage

    Get PDF
    The use of scanning electrochemical microscopy, a high-resolution chemical imaging technique, to probe the distribution and mobility of solutes in articular cartilage is described. In this application, a mobile ultramicroelectrode is positioned close (not, vert, similar1 μm) to the cartilage sample surface, which has been equilibrated in a bathing solution containing the solute of interest. The solute is electrolyzed at a diffusion-limited rate, and the current response measured as the ultramicroelectrode is scanned across the sample surface. The topography of the samples was determined using Ru(CN)64−, a solute to which the cartilage matrix was impermeable. This revealed a number of pit-like depressions corresponding to the distribution of chondrocytes, which were also observed by atomic force and light microscopy. Subsequent imaging of the same area of the cartilage sample for the diffusion-limited reduction of oxygen indicated enhanced, but heterogeneous, permeability of oxygen across the cartilage surface. In particular, areas of high permeability were observed in the cellular and pericellular regions. This is the first time that inhomogeneities in the permeability of cartilage toward simple solutes, such as oxygen, have been observed on a micrometer scale

    Hands-on time during cardiopulmonary resuscitation is affected by the process of teambuilding: a prospective randomised simulator-based trial

    Get PDF
    BACKGROUND: Cardiac arrests are handled by teams rather than by individual health-care workers. Recent investigations demonstrate that adherence to CPR guidelines can be less than optimal, that deviations from treatment algorithms are associated with lower survival rates, and that deficits in performance are associated with shortcomings in the process of team-building. The aim of this study was to explore and quantify the effects of ad-hoc team-building on the adherence to the algorithms of CPR among two types of physicians that play an important role as first responders during CPR: general practitioners and hospital physicians. METHODS: To unmask team-building this prospective randomised study compared the performance of preformed teams, i.e. teams that had undergone their process of team-building prior to the onset of a cardiac arrest, with that of teams that had to form ad-hoc during the cardiac arrest. 50 teams consisting of three general practitioners each and 50 teams consisting of three hospital physicians each, were randomised to two different versions of a simulated witnessed cardiac arrest: the arrest occurred either in the presence of only one physician while the remaining two physicians were summoned to help ("ad-hoc"), or it occurred in the presence of all three physicians ("preformed"). All scenarios were videotaped and performance was analysed post-hoc by two independent observers. RESULTS: Compared to preformed teams, ad-hoc forming teams had less hands-on time during the first 180 seconds of the arrest (93 +/- 37 vs. 124 +/- 33 sec, P > 0.0001), delayed their first defibrillation (67 +/- 42 vs. 107 +/- 46 sec, P > 0.0001), and made less leadership statements (15 +/- 5 vs. 21 +/- 6, P > 0.0001). CONCLUSION: Hands-on time and time to defibrillation, two performance markers of CPR with a proven relevance for medical outcome, are negatively affected by shortcomings in the process of ad-hoc team-building and particularly deficits in leadership. Team-building has thus to be regarded as an additional task imposed on teams forming ad-hoc during CPR. All physicians should be aware that early structuring of the own team is a prerequisite for timely and effective execution of CPR

    Canakinumab in patients with COVID-19 and type 2 diabetes - A multicentre, randomised, double-blind, placebo-controlled trial

    Full text link
    BACKGROUND: Patients with type 2 diabetes and obesity have chronic activation of the innate immune system possibly contributing to the higher risk of hyperinflammatory response to SARS-CoV2 and severe COVID-19 observed in this population. We tested whether interleukin-1β (IL-1β) blockade using canakinumab improves clinical outcome. METHODS: CanCovDia was a multicenter, randomised, double-blind, placebo-controlled trial to assess the efficacy of canakinumab plus standard-of-care compared with placebo plus standard-of-care in patients with type 2 diabetes and a BMI > 25 kg/m2^{2} hospitalised with SARS-CoV2 infection in seven tertiary-hospitals in Switzerland. Patients were randomly assigned 1:1 to a single intravenous dose of canakinumab (body weight adapted dose of 450-750 mg) or placebo. Canakinumab and placebo were compared based on an unmatched win-ratio approach based on length of survival, ventilation, ICU stay and hospitalization at day 29. This study is registered with ClinicalTrials.gov, NCT04510493. FINDINGS: Between October 17, 2020, and May 12, 2021, 116 patients were randomly assigned with 58 in each group. One participant dropped out in each group for the primary analysis. At the time of randomization, 85 patients (74·6 %) were treated with dexamethasone. The win-ratio of canakinumab vs placebo was 1·08 (95 % CI 0·69-1·69; p = 0·72). During four weeks, in the canakinumab vs placebo group 4 (7·0%) vs 7 (12·3%) participants died, 11 (20·0 %) vs 16 (28·1%) patients were on ICU, 12 (23·5 %) vs 11 (21·6%) were hospitalised for more than 3 weeks, respectively. Median ventilation time at four weeks in the canakinumab vs placebo group was 10 [IQR 6.0, 16.5] and 16 days [IQR 14.0, 23.0], respectively. There was no statistically significant difference in HbA1c after four weeks despite a lower number of anti-diabetes drug administered in patients treated with canakinumab. Finally, high-sensitive CRP and IL-6 was lowered by canakinumab. Serious adverse events were reported in 13 patients (11·4%) in each group. INTERPRETATION: In patients with type 2 diabetes who were hospitalised with COVID-19, treatment with canakinumab in addition to standard-of-care did not result in a statistically significant improvement of the primary composite outcome. Patients treated with canakinumab required significantly less anti-diabetes drugs to achieve similar glycaemic control. Canakinumab was associated with a prolonged reduction of systemic inflammation. FUNDING: Swiss National Science Foundation grant #198415 and University of Basel. Novartis supplied study medication

    Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with osteoarthritis, a detailed assessment of degenerative cartilage disease is important to recommend adequate treatment. Using a representative sample of patients, this study investigated whether MRI is reliable for a detailed cartilage assessment in patients with osteoarthritis of the knee.</p> <p>Methods</p> <p>In a cross sectional-study as a part of a retrospective case-control study, 36 patients (mean age 53.1 years) with clinically relevant osteoarthritis received standardized MRI (sag. T1-TSE, cor. STIR-TSE, trans. fat-suppressed PD-TSE, sag. fat-suppressed PD-TSE, Siemens Magnetom Avanto syngo MR B 15) on a 1.5 Tesla unit. Within a maximum of three months later, arthroscopic grading of the articular surfaces was performed. MRI grading by two blinded observers was compared to arthroscopic findings. Diagnostic values as well as intra- and inter-observer values were assessed.</p> <p>Results</p> <p>Inter-observer agreement between readers 1 and 2 was good (kappa = 0.65) within all compartments. Intra-observer agreement comparing MRI grading to arthroscopic grading showed moderate to good values for readers 1 and 2 (kappa = 0.50 and 0.62, respectively), the poorest being within the patellofemoral joint (kappa = 0.32 and 0.52). Sensitivities were relatively low at all grades, particularly for grade 3 cartilage lesions. A tendency to underestimate cartilage disorders on MR images was not noticed.</p> <p>Conclusions</p> <p>According to our results, the use of MRI for precise grading of the cartilage in osteoarthritis is limited. Even if the practical benefit of MRI in pretreatment diagnostics is unequivocal, a diagnostic arthroscopy is of outstanding value when a grading of the cartilage is crucial for a definitive decision regarding therapeutic options in patients with osteoarthritis.</p

    Diverse Applications of Nanomedicine

    Get PDF
    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society

    Nanotechnology in Medicine: Moving from the Bench to the Bedside

    Get PDF
    While living matter is composed of a large number of biological nanomachines, it has been recognized early in the history of nanotechnology that medicine could be a prime field for application. Now that nanotechnology has gone beyond its infancy, its mature arsenal of tools, methods and materials is ready for applications outside physics. While true clinical applications of nanotechnology are still practically non-existent at the current time, a significant number of promising medical projects is at an advanced experimental stage. Tools based on the atomic force microscope will not only allow improved imaging of living matter but can also serve as functional probes and will even serve as sensitive sensors for a broad range of molecules of medical interest. New immunological tests based on microcontact printing and microfluidics will significantly improve medical laboratory diagnosis. New materials, including nanotubes and fullerenes, nanocontainers and other self-assembled structures may improve mechanical properties and biocompatibility of implants and will allow new approaches in drug targeting
    corecore