251 research outputs found

    Electrostatic Force Microscopy and Electrical Isolation of Etched Few-Layer Graphene Nano-Domains

    Get PDF
    Nanostructured bi-layer graphene samples formed through catalytic etching are investigated with electrostatic force microscopy. The measurements and supporting computations show a variation in the microscopy signal for different nano-domains that are indicative of changes in capacitive coupling related to their small sizes. Abrupt capacitance variations detected across etch tracks indicates that the nano-domains have strong electrical isolation between them. Comparison of the measurements to a resistor-capacitor model indicates that the resistance between two bi-layer graphene regions separated by an approximately 10 nm wide etch track is greater than about 1×1012 Ω with a corresponding gap resistivity greater than about 3×1014 Ω⋅nm . This extremely large gap resistivity suggests that catalytic etch tracks within few-layer graphene samples are sufficient for providing electrical isolation between separate nano-domains that could permit their use in constructing atomically thin nanogap electrodes, interconnects, and nanoribbons

    The Formaldehyde Masers in Sgr B2: Very Long Baseline Array and Very Large Array Observations

    Get PDF
    Observations of two of the formaldehyde (H2CO) masers (A and D) in Sgr B2 using the VLBA+Y27 (resolution ~0.01") and the VLA (resolution ~9") are presented. The VLBA observations show compact sources (<10 milliarcseconds, <80 AU) with brightness temperatures >10^8 K. The maser sources are partially resolved in the VLBA observations. The flux densities in the VLBA observations are about 1/2 those of the VLA; and, the linewidths are about 2/3 of the VLA values. The applicability of a core-halo model for the emission distribution is demonstrated. Comparison with earlier H2CO absorption observations and with ammonia (NH3) observations suggests that H2CO masers form in shocked gas. Comparison of the integrated flux densities in current VLA observations with those in previous observations indicates that (1) most of the masers have varied in the past 20 years, and (2) intensity variations are typically less than a factor of two compared to the 20-year mean. No significant linear or circular polarization is detected with either instrument.Comment: 20 pages, 3 figures, 5 tables, accepted to Ap

    Estimating Survival in Patients with Operable Skeletal Metastases: An Application of a Bayesian Belief Network

    Get PDF
    BACKGROUND: Accurate estimations of life expectancy are important in the management of patients with metastatic cancer affecting the extremities, and help set patient, family, and physician expectations. Clinically, the decision whether to operate on patients with skeletal metastases, as well as the choice of surgical procedure, are predicated on an individual patient's estimated survival. Currently, there are no reliable methods for estimating survival in this patient population. Bayesian classification, which includes bayesian belief network (BBN) modeling, is a statistical method that explores conditional, probabilistic relationships between variables to estimate the likelihood of an outcome using observed data. Thus, BBN models are being used with increasing frequency in a variety of diagnoses to codify complex clinical data into prognostic models. The purpose of this study was to determine the feasibility of developing bayesian classifiers to estimate survival in patients undergoing surgery for metastases of the axial and appendicular skeleton. METHODS: We searched an institution-owned patient management database for all patients who underwent surgery for skeletal metastases between 1999 and 2003. We then developed and trained a machine-learned BBN model to estimate survival in months using candidate features based on historical data. Ten-fold cross-validation and receiver operating characteristic (ROC) curve analysis were performed to evaluate the BNN model's accuracy and robustness. RESULTS: A total of 189 consecutive patients were included. First-degree predictors of survival differed between the 3-month and 12-month models. Following cross validation, the area under the ROC curve was 0.85 (95% CI: 0.80-0.93) for 3-month probability of survival and 0.83 (95% CI: 0.77-0.90) for 12-month probability of survival. CONCLUSIONS: A robust, accurate, probabilistic naïve BBN model was successfully developed using observed clinical data to estimate individualized survival in patients with operable skeletal metastases. This method warrants further development and must be externally validated in other patient populations

    The Formaldehyde Masers in NGC 7538 and G29.96-0.02: VLBA, MERLIN, and VLA Observations

    Full text link
    The 6 cm formaldehyde (H2CO) maser sources in the compact HII regions NGC 7538-IRS1 and G29.96-0.02 have been imaged at high resolution (beams < 50 mas). Using the VLBA and MERLIN, we find the angular sizes of the NGC 7538 masers to be ~10 mas (30 AU) corresponding to brightness temperatures ~10^8 K. The angular sizes of the G29.96-0.02 masers are ~20 mas (130 AU) corresponding to brightness temperatures ~10^7 K. Using the VLA, we detect 2 cm formaldehyde absorption from the maser regions. We detect no emission in the 2 cm line, indicating the lack of a 2 cm maser and placing limits on the 6 cm excitation process. We find that both NGC 7538 maser components show an increase in intensity on 5-10 year timescales while the G29.96-0.02 masers show no variability over 2 years. A search for polarization provides 3-sigma upper limits of 1% circularly polarized and 10% linearly polarized emission in NGC 7538 and of 15% circularly polarized emission in G29.96-0.02. A pronounced velocity gradient of 28 km/s/arcsecond (1900 km/s/pc) is detected in the NGC 7538 maser gas.Comment: accepted to ApJ, 15 figures, 11 table

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios

    A Response to the Draft National Mitigation Plan. Teagasc submission to the Department of Communications, Climate Action & theEnvironment

    Get PDF
    Teagasc SubmissionThis submission details the mitigation potential of agriculture to shortly be published as an update to the Marginal Abatement Cost Curve (MACC) for Agriculture and and describes how the MACC mitigation strategies relate to the measures in the National Mitigation Plan

    An Analysis of Abatement Potential of Greenhouse Gas Emissions in Irish Agriculture 2021-2030

    Get PDF
    Teagasc SubmissionThis report has been prepared by the Teagasc Working Group on GHG Emissions, which brings together and integrates the extensive and diverse range of organisational expertise on agricultural greenhouse gases. The previous Teagasc GHG MACC was published in 2012 in response to both the EU Climate and Energy Package and related Effort Sharing Decision and in the context of the establishment of the Food Harvest 2020 production targets

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    An Analysis of the Cost of the Abatement of Ammonia Emissions in Irish Agriculture to 2030

    Get PDF
    peer-reviewedThis analysis quantifies the potential to abate national ammonia (NH3) emissions up to 2030. This report is an updated marginal abatement cost curve (MACC) analysis where Teagasc has quantified the abatement potential of a range of ammonia mitigation measures, as well as their associated costs/benefits (see Lanigan et al. 2015 for previous analysis). The objective of this analysis is to quantify the extent and costs associated with meeting future ammonia emission targets that were negotiated as part of the amended Clean Air Policy Package. The requirement to reduce ammonia emissions is urgent, both in terms of compliance with the National Emissions Ceilings Directive (NECD), and as a principal loss pathway for agricultural nitrogen (N). Improvement of N efficiency is a key focus for improving farm efficiency and sustainability as well as reducing the ammonia, nitrate and greenhouse gas (GHG) footprint of agriculture. This is particularly relevant in the context of the national strategies on the development of the agri-food sector: Food Wise 2025, Ag-food strategy 2030 and Ag-Climatise (currently under development) and the newly unveiled EU Farm to Fork Strategy, which is a part of the European Green Deal. Under the baseline scenario (S1), agricultural ammonia emissions are projected to increase by 9% (without any mitigation) by 2030 relative to 2005 levels. While these increases are small in comparison to the targeted increase in agricultural output, they will provide a major challenge to meeting emissions targets, particularly as agriculture comprises over 99% of national emissions. The analysis presented in this report seeks to quantify the ammonia mitigation potential under likely uptake pathways. This is not an exhaustive analysis of all mitigation measures, but represents an assessment of best available techniques, based on scientific, peer-reviewed research carried out by Teagasc and associated national and international research partners. Indeed, any future changes in the sector or in the national emission inventory calculations will require further analysis of the applicability of ammonia mitigation techniques, particularly in terms of housing and storage but also in the context of other reactive N1 emissions. It should also be noted that some mitigation measures, particularly those related to nitrogen application to soils, could result in either higher greenhouse gas emissions or higher nitrate leaching. Compared to a future where no mitigation measures are deployed to address emissions, by 2030 the average technical abatement2 potential was estimated to be approximately 15.26 kt NH3 at a net cost of €10.86 million per annum. However, it should be noted that the net cost (€10.86 million) is comprised of 6 measures that are cost negative (-€22.21 million) and 7 measures that are cost positive (€33.07) and that some of the cost negative measures are predicated on efficiency gains driven by best management practice adoption (e.g. liming and clover measures with associate chemical N reductions). Amongst the thirteen mitigation measures selected for this analysis, 80% of the mitigation potential can be achieved by the full implementation of the mitigation pathways for protected urea and low emission slurry spreading (LESS) techniques for bovines. It should be stressed that this is an assessment of the maximum abatement potential and realising this level of abatement in practice will be extremely challenging. Any increase in agricultural activity beyond the baseline scenario will increase absolute emissions. The level of mitigation achievable is based on the draft AgClimatise measures any delay or reduction in the uptake of these measures will reduce the mitigation achieved. It must also be ensured that all mitigation measures should, where possible, be synergistic with reductions in greenhouse gas emissions and N loss to water
    • …
    corecore