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Electrostatic force microscopy and electrical isolation of etched few-layer
graphene nano-domains
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Nanostructured bi-layer graphene samples formed through catalytic etching are investigated with

electrostatic force microscopy. The measurements and supporting computations show a variation in

the microscopy signal for different nano-domains that are indicative of changes in capacitive cou-

pling related to their small sizes. Abrupt capacitance variations detected across etch tracks indicates

that the nano-domains have strong electrical isolation between them. Comparison of the measure-

ments to a resistor-capacitor model indicates that the resistance between two bi-layer graphene

regions separated by an approximately 10 nm wide etch track is greater than about 1� 1012 X with

a corresponding gap resistivity greater than about 3� 1014 X � nm. This extremely large gap resis-

tivity suggests that catalytic etch tracks within few-layer graphene samples are sufficient for pro-

viding electrical isolation between separate nano-domains that could permit their use in

constructing atomically thin nanogap electrodes, interconnects, and nanoribbons. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4904709]

Few-layer graphene (FLG) is an atomically thin material

having many beneficial properties, such as high carrier mo-

bility, high thermal conductivity, and tremendous strength,

which make it a potentially useful material for future nano-

scale devices and integrated circuits.1–7 To achieve this goal

of utilizing FLG in nano-electronics requires the ability to

construct nanoscale structures out of it.8 To date, there have

been a number of approaches investigated to achieving nano-

scale FLG.9–26 One such approach which has received atten-

tion is the catalytic etching of few-layer graphene.27 This

catalytic etching has long been known to result in crystallo-

graphically defined etched domains and tracks in bulk graph-

ite.28 It has recently been found that many of the remarkable

etch patterns obtained within bulk graphite persist to the

FLG domain as well27—even when the films are supported

on amorphous insulating substrates.27,29 The fact that the

crystallographic etch patterns can be obtained on insulating

substrates indicates that catalytic etching could be a way to

construct nanoscale electrically isolated FLG segments use-

ful for devices. While there have been a number of investiga-

tions probing the electrical properties of nanostructured

FLG,14,15,30–32 further measurements are required to under-

stand and assess the effects of nanoscale processing and con-

finement. This is particularly true for nanoscale FLG

obtained through catalytic etching that can be difficult to

probe due to the close proximity of the nanoscale domains.

Here, we use electrostatic force microscopy (EFM) to

investigate catalytically etched bi-layer graphene samples.

EFM has recently been used to probe variations of the sur-

face potential of FLG as its thickness varies.33 In contrast to

this previous work, we find an EFM signal that varies signifi-

cantly between nanoscale FLG domains even though they

have the same thickness. We obtain evidence that the change

in the EFM response is due to changes in the capacitive cou-

pling as the size of the nanoscale FLG domains is reduced.

Furthermore, the fact that the EFM signal changes abruptly

in going between adjacent domains gives a lower-bound esti-

mate of their electrical isolation.

The catalytically etched graphene samples used in this

investigation were prepared through mechanical exfoliation

onto pþ-doped silicon substrates having a 300 nm thermal

oxide layer,34,35 followed by processing in a chemical vapor

deposition (CVD) furnace.27,29 In the investigation that fol-

lows, we focus in detail on a region of the sample containing

FIG. 1. (a) Atomic force microscope topography image of a bi-layer gra-

phene (light grey) sample which has been catalytically etched with Ni nano-

particles. The etch tracks down to the insulating SiO2 are the darker lines,

the round white regions are catalyst particles, and the left region is exposed

SiO2 substrate. (b) EFM image of the same region taken at constant 7V that

shows a signal varying for different etched domains. (c) Spatial averages of

the signals within the solid and dashed boxes in (b) at varying applied tip

voltages with quadratic fits. The solid and dashed fits to the data in (c) corre-

spond to the respective solid and dashed boxed regions in (b).a)Email: doug.strachan@uky.edu
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only etch tracks with negligible amounts of carbon nano-

tubes grown on top of the FLG.29,36,37

We start with a bi-layer region (as shown in Fig. 1(a))

that has considerable etching and appears, according to

AFM, to have several electrically isolated regions. The EFM

method we utilize is a two-pass technique consisting of a

conducting tip where the first obtains the topography and the

second retraces the topography a fixed height of 36 nm above

the surface.35 During the second pass, the cantilever is driven

close to resonance using the dithering piezo with a fixed

applied bias between the tip and the doped Si back-gate sub-

strate, while the phase shift of the driven cantilever is meas-

ured. Figure 1(b) shows such an EFM phase image acquired

with a 7V tip-substrate bias of the same etched bi-layer

region, as shown in Fig. 1(a). This image clearly shows that

the various bi-layer regions have very different phase shifts

for a constant bias. This difference in EFM response between

electrically isolated bi-layer regions is further demonstrated

by investigating the phase response as a function of bias.

Figure 1(c) shows such a comparison of the phase versus

bias for the two regions within the square blocks in Fig. 1(b).

Both regions show a parabolic phase response having their

minima located at the same bias but with different concav-

ities. This EFM behavior is distinct from previous measure-

ments over multilayer graphene which, in contrast, show a

constant concavity for such phase plots, but with minima

that occur at varying voltages depending on the few-layer-

graphene thickness.33

The EFM measurements can be understood by approxi-

mating the cantilever response as due to a total capacitance

(CT), a surface potential (uS), an applied electrochemical

potential to the tip relative to back-gate (Vapp), and a work

function difference between the tip and back-gate (DW).

This provides a force gradient for the tip as a function of its

vertical height (z) above the sample that alters the cantile-

ver’s resonance frequency.38 For a cantilever driven at a

fixed frequency near its resonance above a conducting sam-

ple surface, the change in the oscillatory phase is related to

the force gradient through

Du ffi Q

k
F0 z0ð Þ ¼ Q

2k
Vapp � uS � DWð Þ2C00

T z0ð Þ; (1)

where Q is the oscillator quality factor and k is the effective

spring constant. For large-area graphene samples, which are

relevant to the experiments in Ref. 33, the only term which

varies appreciably for a constant tip-FLG height and tip ma-

terial is the surface potential of the FLG which depends on

its thickness. This results in nearly identical parabolic phase

curves as a function of potential which are displaced accord-

ing to the varying surface potential of the FLG,33 in agree-

ment with Eq. (1).

For the samples considered here, where all the FLG seg-

ments are bi-layer, the surface potential is relatively constant

for the etched domains, and thus the phase-shift parabolas

should all have the same voltage minima. However, different

lateral positions above the sample should result in a variation

of C00
Tðz0Þ due to differences in the capacitive coupling to the

geometrically varying shapes of etched FLG below. This

should result in parabolic phase-shift curves with different

curvatures but with minima located at the same voltage, like

those shown in Fig. 1(c). Since the electrical coupling is

strongest between the tip and the FLG directly below it, the

geometry of this closest etched domain should make the

greatest contribution to the curvature of the phase parabola.

Evidence that this effect is the source of the different phase

responses observed in Figs. 1(b) and 1(c) is obtained by plot-

ting the quadratic fitting coefficients of the EFM parabolas

as a function of the surface area of the graphene segments

below the tip, as shown in Fig. 2.

To understand this variation of the quadratic EFM

response as a function of area, we have performed finite-

element simulations of a tip over various geometrical

arrangements of conducting sheets. The simulations were

performed with a cylindrically symmetric arrangement

where the tip is located along the central vertical axis of the

computational volume, given by a cylinder of height

5300 nm and radius 2820.95 nm. The cylindrical symmetry

allows for the simulation of the fields within the entire vol-

ume to be simplified to that of a two-dimensional slice that

significantly increases the speed and precision of the compu-

tations. A back conducting plane is placed on the lower sur-

face of the cylindrical space with various arrangements of

FLG domains located 300 nm above it, as seen in the vicinity

of the tip in Fig. 3(a). The simulated conducting tip is given

a total height of 4260 nm, a realistic radius of curvature of

25 nm and conical opening angle (as measured from the cen-

tral axis) of 25�, and its end is located a lift height z above
the plane containing the FLG domains.

The first arrangement we consider consists of a single

FLG domain of a specified area separated with a single

10 nm gap from a continuous larger surrounding domain

with an outside radius of 2251 nm. The dotted-dashed line in

Figure 3(b) is the potential distribution along the radial direc-

tion of the FLG plane for a tip height of 36 nm resulting in a

significant voltage drop across the 10 nm gap. By performing

simulations at various tip heights from 32 to 40 nm we are

able to estimate C00
T at z0 ¼ 36 nm. The top dot-dashed curve

in Fig. 3(c) shows the results of such a computation as a

function of the inner FLG domain area. While there is a clear

dependence of C00
T on area, the 4.30% change over this range,

FIG. 2. The quadratic fitting coefficient of the EFM phase curves plotted

against the surface area of the bi-layer graphene domain size directly below

the tip (error bars estimated from fits).
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defined as ðC00
Tmax � C00

TminÞ=C00
Tmax, is not sufficient to

account for the 22.5% change we observe in our measure-

ments. This discrepancy does not appear to be due to a varia-

tion in etch track width, as the use of a 15 nm gap (which is

larger than the size determined experimentally through

AFM) in the calculations has only a minimal affect on the

results, as seen by the dashed line in Fig. 3(c). In contrast,

computations without an outside FLG sheet show a 34.0%

change of C00
T over the same range of areas (plotted as the

dotted curve in Fig. 3(c)), which is even greater than

experimentally observed. This suggests that the FLG not

directly below the tip affects the overall capacitance to an in-

termediate level between these two extreme scenarios.

Direct support for this is obtained by simulating the sur-

rounding etched FLG regions as concentric circular sheets of

width 113 nm (i.e., a typical size for an etched domain in

these samples) spaced by 10 nm gaps. This results in a

22.0% change of C00
T shown by the solid red line in Fig. 3(c)

that is in good agreement with the measured data (plotted as

the blue triangles). A radial plot of the potential on the gra-

phene surface for this intermediate scenario (the solid line in

Fig. 3(b)) shows a series of drops at the etched gaps that are

largest close to the tip and that approach the profile without

an outside sheet (the black dotted line) away from the tip.

This suggests that the domain geometry not directly below

the tip gives a non-negligible contribution to the EFM meas-

urements. The scatter of the experimental data off of the

simulated curve in Fig. 3(c) is likely due to variation in these

nearby FLG domain arrangements not directly below the tip.

Future experiments using coaxial EFM tips39 might make it

possible to shield the capacitive coupling to only the single

closest etched FLG domain.

In the above simulations of C00
T , we have ignored effects

due to the cantilever itself which can be important in EFM

force measurements.40,41 This is justified in our EFM force

gradient measurements, as is seen by using a parallel-plate

approximation for the cantilever,42 where its width

(W ¼ 28 lm), length (L ¼ 225lm), and tip height

(h ¼ 17lm) are inserted into Ccant ¼ WL�0=h, C
0
cant � �WL�0

h2¼ �1:93� 10�10 F/m, and C00
cant � 2WL�0=h

3 ¼ 2:27�
10�5 F/m2. Although this C0

cant has a larger magnitude than

the one we simulate, the estimate of C00
cant is only �3% of the

value we compute, and can thus be neglected in the force gra-

dient EFM measurements. In addition, our simulations only

take the geometrical aspects of the capacitive coupling in the

EFM measurements into account, and neglect the local sur-

face potential. For large area FLG films that provide a surface

with a nearly constant surface potential (like in the previous

EFM measurements of FLG33) the minimum of the phase pa-

rabola should directly reflect the surface potential. In contrast,

when the size of the FLG conducting region is small enough

such that the tip appreciably couples directly to the back con-

ducting plane, the phase minimum will not in general be

directly related to the surface potential of the conducting FLG

film.

The fact that the EFM phase response changes abruptly

for adjacent etched bi-layer graphene segments in Fig. 1 per-

mits a lower estimate of the resistive barriers provided by the

etch tracks. For the etched system to act as electrically sepa-

rated conducting FLG domains that maintain the voltage

drops seen in Fig. 3(b), the resistance between them must be

large enough to prevent their electrical equilibration over the

time scale probed by EFM. Thus, the RC time scale for elec-

trical equilibration must be greater than the characteristic

EFM probing time (s) of the experiments as represented by

the simplified two-capacitor circuit model in Fig. 4. In this

model, the EFM probe is positioned over the first FLG do-

main (G1) such that the tip only appreciably couples to it. An

adjacent etched domain (G2) having an overall different

capacitive coupling to the environment is connected to G1

FIG. 3. Finite element simulations of the electrostatic interactions between

the EFM tip and the etched FLG sample. (a) Cross-sectional slice of the sim-

ulation in the vicinity of the tip with etched FLG located on the plane z ¼ 0.

Arrows point to etch tracks and a conducting plane exists at z ¼ �300 nm.

(b) The potential on the plane z ¼ 0 for various FLG arrangements with cen-

tral one of radius 54.4 nm. “No Sheet” does not have additional FLG, “Solid

Sheet” has a single surrounding FLG sheet separated with a 10 nm gap and

an outside radius of 2251 nm, and “Equally Spaced Sheets” has a series of

FLG rings of width 113 nm each separated by 10 nm. (c) C
00
T determined by

the simulations as a function of the area of the domain directly below the

tip. The experimental data from Fig. 2 are plotted on this curve with a single

scaling factor.
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through possible parasitic residual conductance across the

etch tracks. Using this model, it can be shown that when ei-

ther the scan time (the time over which the tip is located

above a particular domain) or the oscillation time of the can-

tilever is less than the RC equilibration time that abrupt

changes in EFM signal are possible in switching the location

of the tip between G1 and G2.
35 To obtain a lower-bound of

the etch-track resistance, we use the shortest of these scales,

which is the oscillation time and is given by s ¼ 2p=x0,

where x0 is the resonance frequency of the 67.461 kHz

probes. The capacitance of a domain consisting of an outside

perimeter of l ¼ 342 nm is estimated as 1:41� 10�17 F by

using the simulations discussed above in Fig. 3 consisting of

equally spaced sheets. The resistance between etched seg-

ments is given by R ¼ qgap=l, where qgap is the resistivity of

the gap (and not a bulk resistivity despite the similar units)

which yields the entire resistance across it when divided by

its length, l. A lower-bound to the gap resistivity can there-

fore be estimated from the RC time-constant using the above

values to obtain qgap � ls=C ¼3� 1014 X � nm. This

extremely large gap resistivity indicates that the samples we

have synthesized yield electrically isolated bi-layer regions.

In conclusion, we have made an EFM investigation of

nanostructured bi-layer graphene samples that are formed by

catalytic etching along narrow (approximately 10 nm wide)

tracks. The measurements show a variation in the quadratic

term of the EFM phase signal for different nano-domains of

bi-layer graphene. Quantitative comparison to simulations

indicates that the change in quadratic behavior is due to a

decrease in the second derivative of the overall capacitive

coupling as the closest nano-domain becomes smaller. The

fact that abrupt capacitance variations can be measured

across etch tracks indicates that the nano-domains have

strong electrical isolation. Modeling the system as a RC cir-

cuit permits a lower estimate of the electrical isolation

between etched nano-domains. This calculation gives a lower-

bound estimate to the gap resistivity of 3� 1014X � nm
between two bi-layer graphene regions separated by an

approximately 10 nm wide etch track. This extremely large

gap resistivity suggests that catalytic etch tracks within FLG

samples are sufficient for providing electrical isolation

between separate nano-domains that could permit their use in

constructing atomically thin nanogap electrodes,22,25,43 inter-

connects,30,32 and nanoribbons.14,31
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