38 research outputs found

    Role of astrocytes and glutamate transporter EAAT2 / GLT1 in Amyotrophic Lateral Sclerosis

    Get PDF
    Daniel Castro: Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República, Uruguay. La contribución en la realización del trabajo fue equivalente a la de los demás estudiantes.-- Elke Díaz: Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República, Uruguay. La contribución en la realización del trabajo fue equivalente a la de los demás estudiantes.-- Irma Lombardo: Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República, Uruguay. La contribución en la realización del trabajo fue equivalente a la de los demás estudiantes.-- Patricia Cassina: Docente supervisor. Departamento de Histología y Embriología de la Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. Contacto: Departamento de Histología y Embriología, Facultad de Medicina, Avda. Gral. Flores 2125, 11800 Montevideo, Uruguay. Tel. (5982) 924 2703. Email: [email protected] Laura Martínez-Palma: Docente supervisor. Departamento de Histología y Embriología de la Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.La Esclerosis Lateral Amiotrófica (ELA) es una enfermedad neurodegenerativa fatal, progresiva que afecta las motoneuronas superiores e inferiores del sistema nervioso central y se acompaña de reactividad glial. La patogenia de esta enfermedad no está del todo clara. Se han postulado diferentes mecanismos dentro de los cuales se destacan las alteraciones en el procesamiento del ARN, en el metabolismo proteico, en el transporte axonal y en la función mitocondrial, aumento del estrés oxidativo y excitotoxicidad. Los astrocitos presentan prolongaciones que rodean la sinapsis, donde se localizan los transportadores de glutamato que captan el exceso del neurotransmisor durante la actividad sináptica. En la ELA se han encontrado alteraciones en este mecanismo lo cual ha resaltado la participación de la glía en la progresión de la enfermedad. El glutamato actúa sobre dos familias de receptores: NMDA y no NMDA, cuyas alteraciones se vinculan con la patogenia de la enfermedad. Además, se ha probado que existe una alteración en la función y disponibilidad del transportador de glutamato EAAT2/GLT1, que contribuye al aumento de la concentración de glutamato extracelular. En este trabajo, el objetivo fue revisar la bibliografía sobre el rol de los astrocitos y el transportador de glutamato EAAT2/GLT1 en la patogenia de la ELA, con el fi n de identificar algunos interrogantes aún no dilucidados para dirigir nuevas investigaciones que puedan mejorar el tratamiento de estos pacientes.Amyotrophic Lateral Sclerosis (ALS) is a fatal, progressive neurodegenerative disease aff ecting upper and lower motor neurons of the central nervous system that is associated to glial reactivity. The pathogenesis of this disease is not entirely clear. Different mechanisms have been postulated, inclu-ding alterations in RNA processing, protein metabolism, axonal transport and mitochondrial function, increased oxidative stress and excitotoxicity. Astrocytes exhibit processes surrounding the synapse, where glutamate transporters are located to uptake the excess of neurotransmitter during synaptic activity. Alterations in this mechanism have been found in ALS and have highlighted the role of glia in the progression of ALS. Glutamate acts on two receptor families: NMDA and non-NMDA. There is evidence that links glutamate transporters dysfunction to the pathogenesis of the disease. In addition, it has been proven that alteration in the function and availability of the glutamate transporter EAAT2 / GLT1 contributes to the increase of extracellular glutamate concentration. In this work, we aim to review the literature on the role of astrocytes and the glutamate transporter EAAT2 / GLT1 in the pathogenesis of ALS, to identify unsolved questions that may guide further research to improve the treatment of these patients

    Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells

    Get PDF
    Cellular senescence is an endpoint of chemotherapy, and targeted therapies in melanoma and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and an enhanced mitochondrial energy metabolism supports resistance to therapy in melanoma cells. Herein, we assessed the mitochondrial function of therapy-induced senescent melanoma cells obtained after exposing the cells to temozolomide (TMZ), a methylating chemotherapeutic agent. Senescence induction in melanoma was accompanied by a substantial increase in mitochondrial basal, ATP-linked, and maximum respiration rates and in coupling efficiency, spare respiratory capacity, and respiratory control ratio. Further examinations revealed an increase in mitochondrial mass and length. Alterations in mitochondrial function and morphology were confirmed in isolated senescent cells, obtained by cell-size sorting. An increase in mitofusin 1 and 2 (MFN1 and 2) expression and levels was observed in senescent cells, pointing to alterations in mitochondrial fusion. Silencing mitofusin expression with short hairpin RNA (shRNA) prevented the increase in mitochondrial length, oxygen consumption rate and secretion of interleukin 6 (IL-6), a component of the SASP, in melanoma senescent cells. Our results represent the first in-depth study of mitochondrial function in therapy-induced senescence in melanoma. They indicate that senescence increases mitochondrial mass, length and energy metabolism; and highlight mitochondria as potential pharmacological targets to modulate senescence and the SASP.Agencia Nacional de Investigación e Innovación FCE_1_2017_1_13602

    Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis

    Get PDF
    Background: In the SOD1G93A mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. Methods: The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1G93A rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. Results: We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1G93A spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1G93A rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. Conclusions: These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models of ALS, and therefore appears well-suited for treating ALS.Agencia Nacional de Investigación e Innovació

    Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis

    Get PDF
    Mitochondrial dysfunction is one of the pathogenic mechanisms that lead to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). Astrocytes expressing the ALS-linked SOD1G93A mutation display a decreased mitochondrial respiratory capacity associated to phenotypic changes that cause them to induce motor neuron death. Astrocyte-mediated toxicity can be prevented by mitochondria-targeted antioxidants, indicating a critical role of mitochondria in the neurotoxic phenotype. However, it is presently unknown whether drugs currently used to stimulate mitochondrial metabolism can also modulate ALS progression. Here, we tested the disease-modifying effect of dichloroacetate (DCA), an orphan drug that improves the functional status of mitochondria through the stimulation of the pyruvate dehydrogenase complex activity (PDH). Applied to astrocyte cultures isolated from rats expressing the SOD1G93A mutation, DCA reduced phosphorylation of PDH and improved mitochondrial coupling as expressed by the respiratory control ratio (RCR). Notably, DCA completely prevented the toxicity of SOD1G93A astrocytes to motor neurons in coculture conditions. Chronic administration of DCA (500 mg/L) in the drinking water of mice expressing the SOD1G93A mutation increased survival by 2 weeks compared to untreated mice. Systemic DCA also normalized the reduced RCR value measured in lumbar spinal cord tissue of diseased SOD1G93A mice. A remarkable effect of DCA was the improvement of grip strength performance at the end stage of the disease, which correlated with a recovery of the neuromuscular junction area in extensor digitorum longus muscles. Systemic DCA also decreased astrocyte reactivity and prevented motor neuron loss in SOD1G93A mice. Taken together, our results indicate that improvement of the mitochondrial redox status by DCA leads to a disease-modifying effect, further supporting the therapeutic potential of mitochondria-targeted drugs in ALS

    Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits

    Get PDF
    Ibogaine is an atypical psychedelic alkaloid, which has been subject of research due to its reported ability to attenuate drug-seeking behavior. Recent work has suggested that ibogaine effects on alcohol self-administration in rats are related to the release of Glial cell Derived Neurotrophic Factor (GDNF) in the Ventral Tegmental Area (VTA), a mesencephalic region which hosts the soma of dopaminergic neurons. Although previous reports have shown ibogaine’s ability to induce GDNF expression in rat midbrain, there are no studies addressing its effect on the expression of GDNF and other neurotrophic factors (NFs) such as Brain Derived Neurotrophic Factor (BDNF) or Nerve Growth Factor (NGF) in distinct brain regions containing dopaminergic neurons. In this work, we examined the effect of ibogaine acute administration on the expression of these NFs in the VTA, Prefrontal Cortex (PFC), Nucleus Accumbens (NAcc) and the Substantia Nigra (SN). Rats were i.p. treated with ibogaine 20 mg/kg (I20), 40 mg/kg (I40) or vehicle, and NFs expression was analyzed after 3 and 24 h. At 24 h an increase of the expression of the NFs transcripts was observed in a site and dose dependent manner. Only for I40, GDNF was selectively upregulated in the VTA and SN. Both doses elicited a large increase in the expression of BDNF transcripts in the NAcc, SN and PFC, while in the VTA a significant effect was found only for I40. Finally, NGF mRNA was upregulated in all regions after I40, while I20 showed a selective upregulation in PFC and VTA. Regarding protein levels, an increase of GDNF was observed in the VTA only for I40 but no significant increase for BDNF was found in all the studied areas. Interestingly, an increase of proBDNF was detected in the NAcc for both doses. These results show for the first time a selective increase of GDNF specifically in the VTA for I40 but not for I20 after 24 h of administration, which agrees with the effective dose found in previous self-administration studies in rodents. Further research is needed to understand the contribution of these changes to ibogaine’s ability to attenuate drug-seeking behavior

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Terminales de teleférico de Madrid en el Paseo del Pintor Rosales y Casa de Campo [Hojas Resumen]

    No full text
    Terminales de teleférico de Madrid en el Paseo del Pintor Rosales y Casa de Camp

    Terminales de teleférico de Madrid en el Paseo del Pintor Rosales y Casa de Campo [Hojas Resumen]

    Full text link
    Terminales de teleférico de Madrid en el Paseo del Pintor Rosales y Casa de Camp
    corecore