62 research outputs found

    Host-Feeding Patterns of Culex Mosquitoes in Relation to Trap Habitat

    Get PDF
    Mosquito feeding patterns identify vertebrate species potentially involved in the amplification of West Nile virus. In New York, northern cardinals (Cardinalis cardinalis) were the predominant hosts in most habitats. Crow (Corvus sp.) blood meals were most frequently identified from sewage treatment plant and storm water catch basin habitats

    Modeling the Spread of Vector-Borne Diseases on Bipartite Networks

    Get PDF
    BACKGROUND: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network. METHODOLOGY/PRINCIPAL FINDINGS: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution. CONCLUSIONS/SIGNIFICANCE: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically

    Tick-borne diseases and co-infection: Current considerations

    Get PDF
    Over recent years, a multitude of pathogens have been reported to be tick-borne. Given this, it is unsurprising that these might co-exist within the same tick, however our understanding of the interactions of these agents both within the tick and vertebrate host remains poorly defined. Despite the rich diversity of ticks, relatively few regularly feed on humans, 12 belonging to argasid and 20 ixodid species, and literature on co-infection is only available for a few of these species. The interplay of various pathogen combinations upon the vertebrate host and tick vector represents a current knowledge gap. The impact of co-infection in humans further extends into diagnostic challenges arising when multiple pathogens are encountered and we have little current data upon which to make therapeutic recommendations for those with multiple infections. Despite these short-comings, there is now increasing recognition of co-infections and current research efforts are providing valuable insights into dynamics of pathogen interactions whether they facilitate or antagonise each other. Much of this existing data is focussed upon simultaneous infection, however the consequences of sequential infection also need to be addressed. To this end, it is timely to review current understanding and highlight those areas still to address

    Avian Host-Selection by Culex pipiens in Experimental Trials

    Get PDF
    Evidence from field studies suggests that Culex pipiens, the primary mosquito vector of West Nile virus (WNV) in the northeastern and north central United States, feeds preferentially on American robins (Turdus migratorius). To determine the contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a known number of adult female C. pipiens in outdoor cages comparing the relative attractiveness of American robins with two common sympatric bird species, European starling, Sternus vulgaris and house sparrow, Passer domesticus. Host seeking C. pipiens were three times more likely to enter robin-baited traps when with the alternate host was a European starling (n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials; OR = 1.80; CI = [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8 trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time, temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird. Findings indicate that preferential feeding by C. pipiens mosquitoes on certain avian hosts is likely to be inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission

    Reply

    No full text

    The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk

    No full text
    The extent to which the biodiversity and community composition of ecosystems affect their functions is an issue that grows ever more compelling as human impacts on ecosystems increase. We present evidence that supports a novel function of vertebrate biodiversity, the buffering of human risk of exposure to Lyme-disease-bearing ticks. We tested the Dilution Effect model, which predicts that high species diversity in the community of tick hosts reduces vector infection prevalence by diluting the effects of the most competent disease reservoir, the ubiquitous white-footed mouse (Peromyscus leucopus). As habitats are degraded by fragmentation or other anthropogenic forces, some members of the host community disappear. Thus, species-poor communities tend to have mice, but few other hosts, whereas species-rich communities have mice, plus many other potential hosts. We demonstrate that the most common nonmouse hosts are relatively poor reservoirs for the Lyme spirochete and should reduce the prevalence of the disease by feeding, but rarely infecting, ticks. By accounting for nearly every host species' contribution to the number of larval ticks fed and infected, we show that as new host species are added to a depauperate community, the nymphal infection prevalence, a key risk factor, declines. We identify important “dilution hosts” (e.g., squirrels), characterized by high tick burdens, low reservoir competence, and high population density, as well as “rescue hosts” (e.g., shrews), which are capable of maintaining high disease risk when mouse density is low. Our study suggests that the preservation of vertebrate biodiversity and community composition can reduce the incidence of Lyme disease
    corecore