159 research outputs found
Descobrindo o endofenótipo da esquizofrenia : estudos das variáveis neuropsicológicas e da cognição social em amostras açorianas de diferentes graus de risco genético
V Roteiro de Saúde Mental “Dignidade em Saúde Mental”, 10 a 14 de Outubro de 2016, Ponta Delgada, Açores (Poster).Enquadramento: A esquizofrenia é uma perturbação cerebral complexa e hereditária, que engloba custos significativos em termos de cuidados de saúde e implica consequências psicossociais severas ao doente e seus cuidadores (tensão familiar, diminuição do bem-estar, da autonomia e da expectativa de vida). As coortes das ilhas portuguesas tem sido um alvo de particular interesse no estudo da esquizofrenia, em parte devido a existência de uma grande prevalência de casos dentro da mesma família (aproximadamente 69%), uma taxa supe-rior ao verificado noutras populações mundiais. Considerando a heterogeneidade desta doença, a atual compreensão da esquizofrenia indica a integração dos estudos genéticos e da neurobio-logia como vias preferenciais para investigação, como forma de descrever os seus aspetos endofenotípicos e estudar sistemática e empiricamente a sua patofisiologia. As recentes aplicações de medidas neurocomportamentais focam-se particularmente na relação entre diversas variáveis da cognição e da cognição social, bem como do seu impacto funcional nestes doentes. Objetivos: Este projeto tem por objetivo caracterizar os aspetos neurocognitivos e da cognição social em 3 grupos de participantes com diferentes graus de risco genético pa-ra a esquizofrenia. Pretende-se investigar eventuais diferenças funcionais nestas 3 amostras e se o funcionamento social e neurocognitivo apresenta áreas deficitárias que possam constitui um fator de vulnerabilidade à doença e de agravamento da capacidade funcional dos indivíduos afetados. Metodologia: Três amostras serão constituídas no presente estudo: doentes diagnosticados com esquizofrenia (n= 50), familiares em primeiro grau de doentes (n=60) e controlos saudáveis (n = 200). Nos Açores, diversas famílias atualmente seguidas por um consórcio internacional de genómica (Genomic Psychiatric Cohort) serão convidadas a participar neste estudo, juntamente de participantes da população geral. O método passa pela a administração de questionários e/ou entrevistas e diversos testes baseados no desempenho, nomeadamente uma bateria neurocognitiva computadorizada e uma avaliação funcional baseada na simulação de tarefas quotidianas. Conclusões: O presente projeto visa proporcionar um contributo empírico ao caracterizar a população afetada e com risco genético elevado, visando a um estudo aprofundado dos fatores neurocognitivos e da cognição social que podem estar afetados pela esquizofrenia, propondo alvos de intervenção terapêutica potencialmente eficazes e novas abordagens psicossociais e preventivas dirigidas aos doentes e seus familiares. Do ponto de vista metodológico, pretende-se, ainda, disponibilizar aos profissionais de saúde e investigadores portugueses diversos instrumentos baseados no desempenho e introduzir inovações no que toca a investigação multidisciplinar nesta doença complexa.Fundação para a Ciência e TecnologiaN/
Comorbidity of Severe Psychotic Disorders With Measures of Substance Use
Although early mortality in severe psychiatric illness is linked to smoking and alcohol, no studies have comprehensively characterized substance use behavior in severe psychotic illness. In particular, recent assessments of substance use in individuals with mental illness are based on population surveys that do not include individuals with severe psychotic illness
Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363–372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h2g) and genetic correlation (rg) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency—“coded-strict”, “coded-broad”, and “coded-broad based on a single clinical encounter” (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h2g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h2g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h2g) was 0.12 (p = 0.004). These h2g were lower or similar to the h2g observed by the ICCBD + PGCBD (0.23, p = 3.17E−80, total N = 33,181). However, the rg between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10–5), coded-strict (1.00, p = 2.40 × 10−4), and coded-broad (0.74, p = 8.11 × 10–7). The rg between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research
Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome
Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS
Genetic Differences between Five European Populations
Aims: We sought to examine the magnitude of the differences in SNP allele frequencies between five European populations (Scotland, Ireland, Sweden, Bulgaria and Portugal) and to identify the loci with the greatest differences. Methods: We performed a population-based genome-wide association analysis with Affymetrix 6.0 and 5.0 arrays. We used a 4 degrees of freedom χ2 test to determine the magnitude of stratification for each SNP. We then examined the genes within the most stratified regions, using a highly conservative cutoff of p < 10–45. Results: We found 40,593 SNPs which are genome-wide significantly (p ≤ 10–8) stratified between these populations. The largest differences clustered in gene ontology categories for immunity and pigmentation. Some of the top loci span genes that have already been reported as highly stratified: genes for hair color and pigmentation (HERC2, EXOC2, IRF4), the LCT gene, genes involved in NAD metabolism, and in immunity (HLA and the Toll-like receptor genes TLR10, TLR1, TLR6). However, several genes have not previously been reported as stratified within European populations, indicating that they might also have provided selective advantages: several zinc finger genes, two genes involved in glutathione synthesis or function, and most intriguingly, FOXP2, implicated in speech development. Conclusion: Our analysis demonstrates that many SNPs show genome-wide significant differences within European populations and the magnitude of the differences correlate with the geographical distance. At least some of these differences are due to the selective advantage of polymorphisms within these loci
A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder
Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10−4). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression
Investigation of convergent and divergent genetic influences underlying schizophrenia and alcohol use disorder
Background
Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and large-scale genome-wide association studies (GWAS) have identified significant genetic correlations between these disorders.
Methods
We used the largest published GWAS for AUD (total cases = 77 822) and SCZ (total cases = 46 827) to identify genetic variants that influence both disorders (with either the same or opposite direction of effect) and those that are disorder specific.
Results
We identified 55 independent genome-wide significant single nucleotide polymorphisms with the same direction of effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic covariance between AUD and SCZ was concentrated in genomic regions functional in brain tissues (p = 0.001).
Conclusions
Our findings provide further evidence that SCZ shares meaningful genetic overlap with AUD
The genomic psychiatry cohort: Partners in discovery
The Genomic Psychiatry Cohort (GPC) is a longitudinal resource designed to provide the necessary population-based sample for large-scale genomic studies, studies focusing on Research Domain Criteria (RDoC) and/or other alternate phenotype constructs, clinical and interventional studies, nested case-control studies, long-term disease course studies, and genomic variant-to-phenotype studies. We provide and will continue to encourage access to the GPC as an international resource. DNA and other biological samples and diagnostic data are available through the National Institute of Mental Health (NIMH) Repository. After appropriate review and approval by an advisory board, investigators are able to collaborate in, propose, and co-lead studies involving cohort participants
A Comprehensive Family-Based Replication Study of Schizophrenia Genes
Schizophrenia (SCZ) is a devastating psychiatric condition. Identifying the specific genetic variants and pathways that increase susceptibility to SCZ is critical to improve disease understanding and address the urgent need for new drug targets
Complement genes contribute sex-biased vulnerability in diverse disorders.
Many common illnesses, for reasons that have not been identified, differentially affect men and women. For instance, the autoimmune diseases systemic lupus erythematosus (SLE) and Sjögren's syndrome affect nine times more women than men1, whereas schizophrenia affects men with greater frequency and severity relative to women2. All three illnesses have their strongest common genetic associations in the major histocompatibility complex (MHC) locus, an association that in SLE and Sjögren's syndrome has long been thought to arise from alleles of the human leukocyte antigen (HLA) genes at that locus3-6. Here we show that variation of the complement component 4 (C4) genes C4A and C4B, which are also at the MHC locus and have been linked to increased risk for schizophrenia7, generates 7-fold variation in risk for SLE and 16-fold variation in risk for Sjögren's syndrome among individuals with common C4 genotypes, with C4A protecting more strongly than C4B in both illnesses. The same alleles that increase risk for schizophrenia greatly reduce risk for SLE and Sjögren's syndrome. In all three illnesses, C4 alleles act more strongly in men than in women: common combinations of C4A and C4B generated 14-fold variation in risk for SLE, 31-fold variation in risk for Sjögren's syndrome, and 1.7-fold variation in schizophrenia risk among men (versus 6-fold, 15-fold and 1.26-fold variation in risk among women, respectively). At a protein level, both C4 and its effector C3 were present at higher levels in cerebrospinal fluid and plasma8,9 in men than in women among adults aged between 20 and 50 years, corresponding to the ages of differential disease vulnerability. Sex differences in complement protein levels may help to explain the more potent effects of C4 alleles in men, women's greater risk of SLE and Sjögren's syndrome and men's greater vulnerability to schizophrenia. These results implicate the complement system as a source of sexual dimorphism in vulnerability to diverse illnesses
- …