156 research outputs found

    Substrate Dependant Microbial Synthesis of Silver Nanoparticle and its Application as Antimicrobial Agent

    Get PDF
    Microbial synthesis of nanoparticles is a green chemistry approach that interconnects nanotechnology and microbial biotechnology. In this present study, synthesis of silver nanoparticles (AgNPs) has been demonstrated using a metabolically versatile actinobacteria Rhodococcus sp. by reducing aqueous silver nitrate. The AgNPs were characterized by Ultraviolet–Visible (UV – vis) Spectrometer, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS), Selected Area Diffraction Pattern (SAED) and Transmission Electron Microscopy (TEM). The TEM showed spherical particles with an average size of 10 nm. The SAED pattern showed the characteristic Bragg peaks of (111), (200), (220) and (311) facets of the face centered cubic (fcc) silver nanoparticles and confirmed that these nanoparticles are crystalline in nature. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3482

    Bandwidth selection for kernel density estimation with length-biased data

    Get PDF
    Length-biased data are a particular case of weighted data, which arise in many situations: biomedicine, quality control or epidemiology among others. In this paper we study the theoretical properties of kernel density estimation in the context of length-biased data, proposing two consistent bootstrap methods that we use for bandwidth selection. Apart from the bootstrap bandwidth selectors we suggest a rule-of-thumb. These bandwidth selection proposals are compared with a least-squares cross-validation method. A simulation study is accomplished to understand the behaviour of the procedures in finite samples

    Ab initio calculation of the KRb dipole moments

    Full text link
    The relativistic configuration interaction valence bond method has been used to calculate permanent and transition electric dipole moments of the KRb heteronuclear molecule as a function of internuclear separation. The permanent dipole moment of the ground state X1Σ+X^1\Sigma^+ potential is found to be 0.30(2) ea0ea_0 at the equilibrium internuclear separation with excess negative charge on the potassium atom. For the a3Σ+a^3\Sigma^+ potential the dipole moment is an order of magnitude smaller (1 ea0=8.478351030ea_0=8.47835 10^{-30} Cm) In addition, we calculate transition dipole moments between the two ground-state and excited-state potentials that dissociate to the K(4s)+Rb(5p) limits. Using this data we propose a way to produce singlet X1Σ+X^1\Sigma^+ KRb molecules by a two-photon Raman process starting from an ultracold mixture of doubly spin-polarized ground state K and Rb atoms. This Raman process is only allowed due to relativistic spin-orbit couplings and the absence of gerade/ungerade selection rules in heteronuclear dimers.Comment: 16 pages, 7 figure

    FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.

    Get PDF
    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome

    Recognize fish as food in policy discourse and development funding

    Get PDF
    The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture

    RTN2 deficiency results in an autosomal recessive distal motor neuropathy with lower limb spasticity

    Get PDF
    Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9–50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN

    Design and optimization of self-microemulsifying drug delivery system (SMEDDS) of felodipine for chronotherapeutic application

    Get PDF
    The objective of this research work was to design, develop and optimize the self micro-emulsifying drug delivery system (SMEDDS) of Felodipine (FL) filled in hard gelatine capsule coated with polymer in order to achieve rapid drug release after a desired time lag in the management of hypertension. Microemulsion is composed of a FL, Lauroglycol FCC, Transcutol P and Cremophor EL. The optimum surfactant to co-surfactant ratio was found to be 2:1. The resultant microemulsions have a particle size in the range of 65-85 nm and zeta potential value of -13.71 mV. FL release was adequately adjusted by using pH independent polymer i.e. ethyl cellulose along with dibutyl phthalate as plasticizer. Influence of formulation variables like viscosity of polymer, type of plasticizer and percent coating weight gain was investigated to characterize the time lag. The developed formulation of FL SMEDDS capsules coated with ethyl cellulose showed time lag of 5-7 h which is desirable for chronotherapeutic application

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore