81 research outputs found

    Are long-term climate projections useful for on-farm adaptation decisions?

    Get PDF
    The current literature on climate services for farmers predominantly focuses on seasonal forecasts, with an assumption that longer-term climate projections may not be suitable for informing farming decisions. In this paper, we explore whether certain types of long-term climate projections may be useful for some specific types of farming decisions. Through interviews with almond tree crop farmers and farm advisors in California, we examine how farmers perceive the utility and accuracy levels of long-term climate projections and identify the types of projections that they may find useful. The interviews revealed that farmers often perceive long-term climate projections as an extension of weather forecasts, which can lead to their initial skepticism of the utility of such information. However, we also found that when farmers were presented with long-term trends or shifts in crop-specific agroclimatic metrics (such as chill hours or summer heat), they immediately perceived these as valuable for their decision-making. Hence, the manner in which long-term projections are framed, presented, and discussed with farmers can heavily influence their perception of the potential utility of such projections. The iterative conversations as part of the exploratory interview questions, served as a tool for “joint construction of meaning” of complex and ambiguous terms such as “long-term climate projections,” “long-term decisions” and “uncertainty.” This in-turn supported a joint identification (and understanding) of the types of information that can potentially be useful for on-farm adaptive decisions, where the farmer and the interviewer both improvise and iterate to find the best types of projections that fit specific decision-contexts. Overall, this research identifies both the types of long-term climate information that farmers may consider useful, and the engagement processes that are able to effectively elicit farmers' long-term information needs

    Climate Change: What Does It Mean for Nebraska?

    Get PDF
    Because Nebraska’s location on the North American continent is far removed from large bodies of water, Nebraskans experience a strong continental type climate. As such, residents do not benefit from the moderating influence of the ocean, and temperatures can have wide swings from day to day and season to season. Typical characteristics for a continental climate at this latitude are large temperature variability with warm summers dominated by convective thunderstorms, and cold winters influenced by snow and wind from mid-latitude cyclones

    Regional Climate Trends and Scenarios for the U.S. National Climate Assessment Part 4. Climate of the U.S. Great Plains

    Get PDF
    This document is one of series of regional climate descriptions designed to provide input that can be used in the development of the National Climate Assessment (NCA). As part of a sustained assessment approach, it is intended that these documents will be updated as new and well-vetted model results are available and as new climate scenario needs become clear. It is also hoped that these documents (and associated data and resources) are of direct benefit to decision makers and communities seeking to use this information in developing adaptation plans. There are nine reports in this series, one each for eight regions defined by the NCA, and one for the contiguous U.S. The eight NCA regions are the Northeast, Southeast, Midwest, Great Plains, Northwest, Southwest, Alaska, and Hawai‘i/Pacific Islands. These documents include a description of the observed historical climate conditions for each region and a set of climate scenarios as plausible futures – these components are described in more detail below. While the datasets and simulations in these regional climate documents are not, by themselves, new, (they have been previously published in various sources), these documents represent a more complete and targeted synthesis of historical and plausible future climate conditions around the specific regions of the NCA. There are two components of these descriptions. One component is a description of the historical climate conditions in the region. The other component is a description of the climate conditions associated with two future pathways of greenhouse gas emissions

    May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension

    Get PDF
    Aims Raised blood pressure (BP) is the biggest contributor to mortality and disease burden worldwide and fewer than half of those with hypertension are aware of it. May Measurement Month (MMM) is a global campaign set up in 2017, to raise awareness of high BP and as a pragmatic solution to a lack of formal screening worldwide. The 2018 campaign was expanded, aiming to include more participants and countries. Methods and results Eighty-nine countries participated in MMM 2018. Volunteers (≥18 years) were recruited through opportunistic sampling at a variety of screening sites. Each participant had three BP measurements and completed a questionnaire on demographic, lifestyle, and environmental factors. Hypertension was defined as a systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, or taking antihypertensive medication. In total, 74.9% of screenees provided three BP readings. Multiple imputation using chained equations was used to impute missing readings. 1 504 963 individuals (mean age 45.3 years; 52.4% female) were screened. After multiple imputation, 502 079 (33.4%) individuals had hypertension, of whom 59.5% were aware of their diagnosis and 55.3% were taking antihypertensive medication. Of those on medication, 60.0% were controlled and of all hypertensives, 33.2% were controlled. We detected 224 285 individuals with untreated hypertension and 111 214 individuals with inadequately treated (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) hypertension. Conclusion May Measurement Month expanded significantly compared with 2017, including more participants in more countries. The campaign identified over 335 000 adults with untreated or inadequately treated hypertension. In the absence of systematic screening programmes, MMM was effective at raising awareness at least among these individuals at risk

    Climate Change: What Does It Mean for Nebraska?

    Get PDF
    Because Nebraska’s location on the North American continent is far removed from large bodies of water, Nebraskans experience a strong continental type climate. As such, residents do not benefit from the moderating influence of the ocean, and temperatures can have wide swings from day to day and season to season. Typical characteristics for a continental climate at this latitude are large temperature variability with warm summers dominated by convective thunderstorms, and cold winters influenced by snow and wind from mid-latitude cyclones

    Evaluating Correlations and Development of Meteorology Based Yield Forecasting Model for Strawberry

    No full text
    California state is among the leading producers of strawberries in the world. The value of the California strawberry crop is approximately $2.6 billion, which makes it one of the most valuable fruit crops for the state and nation’s economy. California’s weather provides ideal conditions for strawberry production and changes in weather pattern could have a significant impact on strawberry fruit production. Evaluating relationships between meteorological parameters and strawberry yield can provide valuable information and early indications of yield forecasts that growers can utilize to their advantage. Objectives of this paper were to evaluate correlations of meteorological parameters on strawberry yield for Santa Maria region and to develop meteorology based empirical yield forecasting models for strawberries. Results showed significant correlation between meteorological parameters and strawberry yield and provided a basis for yield forecasting with lead time. Results from empirical models showed that cross-validated yields were closely associated with observed yield with lead time of 2 to 5 months. Overall, this study showed great potential in developing meteorology based yield forecast using principal components. This study only looked at meteorology based yield forecasts. Skills of these models can be further improved by adding physiological parameters of strawberry to existing models for strawberry

    Weather Based Strawberry Yield Forecasts at Field Scale Using Statistical and Machine Learning Models

    No full text
    Strawberry is a high value and labor-intensive specialty crop in California. The three major fruit production areas on the Central Coast complement each other in producing fruits almost throughout the year. Forecasting strawberry yield with some lead time can help growers plan for required and often limited human resources and aid in making strategic business decisions. The objectives of this paper were to investigate the correlation among various weather parameters related with strawberry yield at the field level and to evaluate yield forecasts using the predictive principal component regression (PPCR) and two machine-learning techniques: (a) a single layer neural network (NN) and (b) generic random forest (RF). The meteorological parameters were a combination of the sensor data measured in the strawberry field, meteorological data obtained from the nearest weather station, and calculated agroclimatic indices such as chill hours. The correlation analysis showed that all of the parameters were significantly correlated with strawberry yield and provided the potential to develop weekly yield forecast models. In general, the machine learning technique showed better skills in predicting strawberry yields when compared to the principal component regression. More specifically, the NN provided the most skills in forecasting strawberry yield. While observations of one growing season are capable of forecasting crop yield with reasonable skills, more efforts are needed to validate this approach in various fields in the region

    Building climate change resilience in California through UC Cooperative Extension

    No full text
    A survey of UC ANR academics found opportunities for expanding the role of climate change in extension work
    corecore