271 research outputs found

    Spatiotemporally heterogeneous deformation, indirect tectonomagmatic links, and lithospheric evolution during orogenic activity coeval with an arc flare-up

    Get PDF
    Broad overlap between deformation and magmatism in active margins has spurred the development of a conceptual framework of direct tectonomagmatic links in both active and ancient arcs. Although widespread and highly influential, such models have only rarely been critically evaluated. Rigorously linking tectonism, geodynamics, lithospheric evolution, and arc activity requires detailed reconstructions of the spatiotemporal patterns of magmatism and deformation across both a sufficiently wide area and a range of observational scales. Herein, new constraints on the timing, extent, and characteristics of deformation during mid-Cretaceous tectonism in the central Sierra Nevada (eastern California, USA) are synthesized with published geologic mapping, structural studies, and geochronology to create an updated reconstruction of one of the type examples of a hot, magma-rich orogen. Tilted strata, tectonic fabrics, and shear zones with variable geometries, kinematics, intensity, and timing reveal a significantly revised record of ~25 m.y. of heterogeneous deformation ca. 105–80 Ma. Deformation and magmatism show distinct and unrelated spatiotemporal patterns throughout this orogenic episode. Contrary to previous models of direct tectonomagmatic links, many of which were developed in the central Sierra Nevada, arc activity did not control the location, intensity, or kinematics of intra-arc deformation, nor did shear zones control the location of magmatism. Furthermore, arc lithosphere appears to have strengthened, rather than weakened, as the arc-orogenic flare-up proceeded. In addition to changing plate-scale boundary conditions, lithospheric-scale rheological evolution likely played a key role in the patterns of Late Cretaceous deformation observed across strike of the entire Cordilleran margin

    Magmatically folded and faulted schlieren zones formed by magma avalanching in the Sonora Pass Intrusive Suite, Sierra Nevada, California

    Get PDF
    The southwestern margin of the Late Cretaceous Sonora Pass Intrusive Suite, northern Sierra Nevada, California (USA), preserves a densely populated zone of magmatic structures that record dynamic magmatic layer formation and deformation (faulting and folding) within a solidifying upper-crustal magma mush. This zone consists largely of coupled melanocratic (or schlieren) and leucocratic bands hosted within the 95.6 ± 1.5 Ma Kinney Lakes granodiorite (Leopold, 2016), with orientations approximately parallel to the intrusive margin and with inward younging directions. Schlieren consist of a high modal abundance of medium-grained ferromagnesian minerals (hornblende + biotite), zircon, sphene, apatite, opaque minerals, and minor plagioclase and interstitial quartz. Leucocratic bands are dominated by coarse-grained feldspar + quartz with minor ferromagnesian and accessory minerals. Whole-rock geochemical and Sr and Nd isotopic data indicate that the schlieren are derived from the Kinney Lakes granodiorite by effective mechanical separation of mafic minerals and accessory phases. We interpret that the schlieren zone at the margin of the Kinney Lakes granodiorite formed by large-scale collapse of crystal mush by “magma avalanching,” facilitated by gravity, local convection, and possibly by host-rock stoping at the margin. This process eroded a significant portion of the solidifying margin of the chamber and resulted in the formation of magmatically deformed layered structures, which experienced further mingling, re-intrusion, magmatic erosion, and recycling processes. We envisage that magma avalanching of magma mushes in plutons can be achieved by any unstable process (e.g., tectonic, fluid-assisted, stoping, or gravity-driven) in large, longlived magma-mush chambers.Fil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Ardill, K.. University of Southern California; Estados UnidosFil: Stanback, J.. University of Southern California; Estados UnidosFil: Paterson, Scott Robert. University of Southern California; Estados UnidosFil: Galindo, C.. Universidad Complutense de Madrid; EspañaFil: Leopold, M.. San Juan College; Estados Unidos. School of Science, Math, and Engineering; Estados Unido

    Construction, Emplacement, and Geochemical Evolution of Deep-Crustal Intrusions: Tenpeak and Dirtyface Plutons, North Cascades, Western North America

    Get PDF
    Deep plutonic systems represent an important link between lower-crustal melt-generation sites and higher-level regions of magma accumulation, but models for these systems are limited by the relative scarcity of exposed weakly deformed, deep-crustal plutons. Exceptions include the ca. 92.3–89.7 Ma, dominantly tonalitic Tenpeak pluton and the smaller, nearby ca. 91 Ma Dirtyface pluton of the North Cascades (western North America), which represent deeply exposed crustal levels (∼25–35 km) of a Cordilleran arc. Initial subduction-driven magmatism in the Tenpeak pluton was marked by co-magmatic hydrous mafic and felsic magmas, which formed gabbro, diorite, tonalite, and hornblendite within a heterogeneous mafic complex. High-MgO, Ni and Cr tonalitic magmas (Schaefer Lake subtype) with (εNd)0 of +4.8 to +5.8 accompanied or shortly followed this magmatism, and typify the Dirtyface intrusion. This early magmatism formed moderately to steeply dipping sheets, which are best developed in the southwestern margin of the Tenpeak pluton and in an internal zone with host rock rafts. As the system evolved, a different source was tapped to produce typical calc-alkaline magmas (Indian Creek subtype) that are more isotopically evolved (initial εNd = +3.0 to +4.0). Magmas of this subtype formed bodies that are elliptical in map view and that truncated internal magmatic contacts and more strongly deformed tonalite, compatible with removal of older solidified and magmatic materials. The Schaefer Lake subtype terminated or was overwhelmed by the Indian Creek subtype in the youngest, high-volume magmas of the Tenpeak pluton. Both plutons have moderately to steeply dipping contacts that define the shape of an elongate asymmetric funnel to wedge. During sheet emplacement, magma wedging isolated and rotated rafts and blocks of host meta-supracrustal rock. Vertical, mostly downward transport of host rock by ductile flow and at least modest stoping were important during emplacement of the larger bodies. Only small ephemeral magma chambers formed in the early stages of pluton construction, but larger bodies (tens of cubic kilometers) probably remained mushy during crystallization of the relatively homogeneous younger tonalites. The juxtaposition of different magma subtypes, at least local mixing at the emplacement level, and removal and/or recycling of older magmas indicates that magmas from different sources utilized the same conduit for a protracted time interval. Large volumes of magma probably ascended through the system to form the larger and relatively more homogeneous intrusions in the shallow levels of the arc. This magma was likely filtered and homogenized by processes operating at the Tenpeak level. The end result was a deep- to shallow-crustal, steep, irregularly shaped magmatic system

    Schlieren bound magmatic structures record crystal flow sorting in dynamic upper crustal magma mush chambers

    Get PDF
    The size, longevity, and mobility of upper-crustal magma mushes, and thus their ability to mix and interact with newly arriving magma batches, are key factors determining the evolution of magma reservoirs. Magmatic structures in plutons represent local sites of structural and compositional diversity and provide an opportunity to test the extent of physical and chemical processes that operated through time. Regional compilation of compositionally defined magmatic structures, specifically those involving schlieren, in the Tuolumne Intrusive Complex (TIC), yields a synthesis of ∼1500 schlieren-bound structure measurements. Field observations, petrography, and whole-rock geochemistry were integrated to test schlieren formation mechanisms. At a local scale (1 mm–1 m), we find that schlieren-bound structures formed from the surrounding host magma during dynamic magmatic processes such as crystal flow-sorting, magmatic faulting, and folding. Fluidization of the magma mush, interpreted from 1 m to 1 km wide domains of clustered schlieren-bound structures, appears to have operated within a hydrogranular medium, or “crystal slurry” (Bergantz et al., 2017). At the regional scale (10’s km), outward younging patterns of troughs, migrating tubes, and plumes indicate that the mush convected, driven by intrusion of new pulses. Troughs and planar schlieren are weakly oriented parallel to nearby major unit contacts, which could be related to internal mush convection or effects of high thermochemical gradients at internal unit boundaries. We hypothesize that these younging patterns and orientations have the potential to constrain the size of mobile magma mixing regions, that in the TIC extended to a minimum of 150 km2 (∼1500 km3) and were long-lived (>1 m.y). These require the generation of extensive melt-present reservoirs that could flow magmatically, formed from the amalgamation of intruding magma pulses, and precludes dike, sill, or laccolith emplacement models. We conclude that schlieren-bound structures are faithful recorders of the multi-scale, hypersolidus evolution of upper-crustal magma bodies, and represent useful tools for studying plutonic systems.Fil: Ardill, Katie E.. University of Southern California; Estados UnidosFil: Paterson, Scott Robert. University of Southern California; Estados UnidosFil: Stanback, Jonathan. University of Southern California; Estados UnidosFil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; Argentina. Universidad Nacional de La Rioja; ArgentinaFil: King, James J.. University of Oxford; Reino Unido. University of Durham; Reino UnidoFil: Crosbie, Simon E.. University of Durham; Reino Unid

    Upper-crustal architecture and record of Famatinian arc activity in the Sierra de Narváez and Sierra de Las Planchadas, NW Argentina

    Get PDF
    The 495 to 450 Ma Famatinian orogen, exposed throughout central and northwestern Argentina, formed from east-directed subduction under the Gondwanan margin. The Sierra de Narváez and Sierra de Las Planchadas preserve a rare upper-crustal section of the Famatinian arc. New mapping, structural analysis, detrital U–Pb zircon geochronology, as well as major and trace element geochemistry in the Sierra de Narváez – Las Planchadas are presented to give a comprehensive geodynamic portrait of the volcano-sedimentary, igneous, and deformational processes acting within the top of the Famatinian arc in the Ordovician. Field observations and bulk rock geochemistry agree with previous work indicating that the top of the Famatinian arc consisted of volcanic centers, mafic and felsic feeders, and plutons built into continental crust in a shallow marine arc setting, characterized by fossil-bearing, fine-grained marine sediments interbedded with coarse-grained volcanic-clastic material. Trace element chemistry is consistent with the Sierra de Narváez – Las Planchadas region being a continuation along the main arc axis from the more southerly Sierra de Famatina, not a back arc setting as previously interpreted. Detrital zircon geochronology in Permian and Carboniferous sedimentary units unconformably overlying Ordovician units adds further constraints to the duration of Famatinian arc activity and the source of sedimentary material. Two peaks in detrital zircon ages within Carboniferous and Permian strata at 481 Ma and from 474 to 469 Ma, record periods of enhanced magma addition during Famatinian arc activity. Structural analysis establishes both Famatinian and post-Famatinian (largely Andean) deformation; contractional deformation in the Ordovician, although small relative to middle- to lower-crustal levels of the Famatinian orogen, caused crustal thickening and likely initiated surface uplift. Unlike the Famatinian middle to lower crust, however, where widespread ductile deformation is ubiquitous, shortening here is accommodated by open folding, pressure solution, and likely localized brittle faulting. We briefly speculate on the implications of variable shortening recorded at different crustal levels.Fil: Lusk, Alexander D.. University of Wisconsin; Estados Unidos. University of Southern California; Estados UnidosFil: Ratschbacher, Barbara C.. University of Southern California; Estados UnidosFil: Larrovere, Mariano Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; Argentina. Universidad Nacional de La Rioja; ArgentinaFil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; Argentina. Universidad Nacional de La Rioja; ArgentinaFil: Memeti, Valbone. California State University Fullerton; Estados UnidosFil: Paterson, Scott Robert. University of Southern California; Estados Unido

    Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels

    Get PDF
    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade

    Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    Get PDF
    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations

    Deploying the NASA Valkyrie Humanoid for IED Response: An Initial Approach and Evaluation Summary

    Full text link
    As part of a feasibility study, this paper shows the NASA Valkyrie humanoid robot performing an end-to-end improvised explosive device (IED) response task. To demonstrate and evaluate robot capabilities, sub-tasks highlight different locomotion, manipulation, and perception requirements: traversing uneven terrain, passing through a narrow passageway, opening a car door, retrieving a suspected IED, and securing the IED in a total containment vessel (TCV). For each sub-task, a description of the technical approach and the hidden challenges that were overcome during development are presented. The discussion of results, which explicitly includes existing limitations, is aimed at motivating continued research and development to enable practical deployment of humanoid robots for IED response. For instance, the data shows that operator pauses contribute to 50\% of the total completion time, which implies that further work is needed on user interfaces for increasing task completion efficiency.Comment: 2019 IEEE-RAS International Conference on Humanoid Robot

    Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Get PDF
    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations

    international Epidemiology of Carbapenemase-Producing Escherichia Coli

    Get PDF
    BACKGROUND: Carbapenemase-producing (CP) Escherichia coli (CP-Ec) are a global public health threat. We aimed to describe the clinical and molecular epidemiology and outcomes of patients from several countries with CP-Ec isolates obtained from a prospective cohort. METHODS: Patients with CP-Ec were enrolled from 26 hospitals in 6 countries. Clinical data were collected, and isolates underwent whole-genome sequencing. Clinical and molecular features and outcomes associated with isolates with or without metallo-β-lactamases (MBLs) were compared. The primary outcome was desirability of outcome ranking (DOOR) at 30 days after the index culture. RESULTS: Of the 114 CP-Ec isolates in Consortium on resistance against carbapenems in Klebsiella and other Enterobacterales-2 (CRACKLE-2), 49 harbored an MBL, most commonly blaNDM-5 (38/49, 78%). Strong regional variations were noted with MBL-Ec predominantly found among patients in China (23/49). Clinically, MBL-Ec were more often from urine sources (49% vs 29%), less often met criteria for infection (39% vs 58%, P = .04), and had lower acuity of illness when compared with non-MBL-Ec. Among patients with infection, the probability of a better DOOR outcome for a randomly selected patient with MBL-Ec as compared with non-MBL-Ec was 62% (95% CI: 48.2-74.3%). Among infected patients, non-MBL-Ec had increased 30-day (26% vs 0%; P = .02) and 90-day (39% vs 0%; P = .001) mortality compared with MBL-Ec. CONCLUSIONS: Emergence of CP-Ec was observed with important geographic variations. Bacterial characteristics, clinical presentations, and outcomes differed between MBL-Ec and non-MBL-Ec. Mortality was higher among non-MBL isolates, which were more frequently isolated from blood, but these findings may be confounded by regional variations
    corecore