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Background. Carbapenemase-producing (CP) Escherichia coli (CP-Ec) are a global public health threat. We aimed to describe 
the clinical and molecular epidemiology and outcomes of patients from several countries with CP-Ec isolates obtained from a 
prospective cohort.

Methods. Patients with CP-Ec were enrolled from 26 hospitals in 6 countries. Clinical data were collected, and isolates 
underwent whole-genome sequencing. Clinical and molecular features and outcomes associated with isolates with or without 
metallo-β-lactamases (MBLs) were compared. The primary outcome was desirability of outcome ranking (DOOR) at 30 days 
after the index culture.

Results. Of the 114 CP-Ec isolates in Consortium on resistance against carbapenems in Klebsiella and other Enterobacterales-2 
(CRACKLE-2), 49 harbored an MBL, most commonly blaNDM-5 (38/49, 78%). Strong regional variations were noted with MBL-Ec 
predominantly found among patients in China (23/49). Clinically, MBL-Ec were more often from urine sources (49% vs 29%), less 
often met criteria for infection (39% vs 58%, P = .04), and had lower acuity of illness when compared with non–MBL-Ec. Among 
patients with infection, the probability of a better DOOR outcome for a randomly selected patient with MBL-Ec as compared with 
non–MBL-Ec was 62% (95% CI: 48.2–74.3%). Among infected patients, non–MBL-Ec had increased 30-day (26% vs 0%; P = .02) 
and 90-day (39% vs 0%; P = .001) mortality compared with MBL-Ec.

Conclusions. Emergence of CP-Ec was observed with important geographic variations. Bacterial characteristics, clinical 
presentations, and outcomes differed between MBL-Ec and non–MBL-Ec. Mortality was higher among non-MBL isolates, which 
were more frequently isolated from blood, but these findings may be confounded by regional variations.
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Antimicrobial resistance is a major concern, presenting both a 
challenge to the treatment of patients today and an ever- 
growing threat to global public health. Carbapenem-resistant 
Enterobacterales (CRE), such as Escherichia coli, are particular-
ly concerning because of their high level of antimicrobial resis-
tance, limited current treatment options, and potential for 
widespread transmission via mobile genetic elements [1]. 

Carbapenem resistance can occur in the setting of carbapene-
mase production or via a combination of a β-lactamase with 
porin mutations [2, 3]. Carbapenem resistance due to carbape-
nemases is particularly worrisome as genes encoding these 
β-lactamases are often present on mobile genetic elements 
that facilitate further horizontal transmission. From their initial 
identification, carbapenemase-producing Enterobacterales 
have rapidly spread globally during the last 25 years [3].

Escherichia coli are the most common cause of 
Enterobacterales infections in various clinical settings and are 
often community acquired [4, 5]. Importantly, resistant 
E. coli is the organism responsible for most deaths due to anti-
microbial resistance globally [6]. Thus, acquisition of carbape-
nem resistance among E. coli is of significant concern. 
While carbapenem resistance was initially described among 
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hospital-acquired infections, a rising incidence of carbapenem- 
resistant E. coli infections not associated with hospitalization is 
increasingly reported [4].

Among the various carbapenemase-producing (CP) E. coli 
(CP-Ec), the presence of a metallo-β-lactamase (MBL; class 
B carbapenemase) is particularly worrisome because 
treatment options against these isolates are limited. Clinically 
important MBLs include the New-Delhi (NDM), Verona 
integron-encoded (VIM), and imipenemase (IMP) MBLs. 
Currently approved novel β-lactamase inhibitors such as avi-
bactam, vaborbactam, and relebactam lack sufficient inhibitory 
activity against MBL to protect their companion β-lactams 
[7, 8]. Cefiderocol is one of the few agents with activity against 
MBL-producing Enterobacterales and early efficacy data to 
support its use [9]. A better understanding of the epidemiology 
and outcomes of MBL-Ec is needed to guide proper 
therapy. We conducted this study to describe the clinical and 
molecular epidemiology and outcomes of CP-Ec and to 
examine how these factors differed between MBL and 
non-MBL CP-Ec.

METHODS

Study Design

CRACKLE-2 was a multicenter, international, prospective co-
hort study [10]. The inclusion criteria and study design have 
been previously described [10]. Briefly, patients of any age ad-
mitted to the hospital with CRE clinical isolates consistent with 
the Centers for Disease Control and Prevention (CDC) defini-
tion from any site were consecutively enrolled. In the present 
analysis, patients enrolled from June 2017 to July 2018 were el-
igible for inclusion when the first qualifying CRE culture was 
positive for a carbapenem-resistant E. coli isolate, and at least 
1 carbapenemase gene was present on whole-genome sequenc-
ing (WGS). The study was approved by each site’s institutional 
review board, including a waiver for the requirement to obtain 
informed consent.

Study Procedures and Definitions

Clinical data including patient demographics, clinical charac-
teristics, laboratory findings, antimicrobial treatments re-
ceived, and outcomes were recorded from the electronic 
health record (EHR) by on-site investigators. We used clinical 
data to calculate 2 index scores to capture acute severity of ill-
ness and comorbidity: the Pitt bacteremia score (PBS) and the 
Charlson comorbidity index, respectively [11]. The PBS is a se-
verity of acute illness index that ranges from 0 to 14 and has 
been previously validated in predicting mortality among gram- 
negative bacteremic and nonbacteremic infections [12, 13]. 
Higher scores indicate more severe illness; a score of 4 or higher 
indicates critical illness. The Charlson comorbidity index rang-
es from 0 to 37, with higher scores indicating more comorbid 
conditions and/or more severe comorbidities [11].

Infection was defined based on culture source as previously 
described [10] and detailed in the Supplementary Methods. 
We categorized isolates as either MBL-carbapenemase- 
producing E. coli (MBL-Ec) or as non–MBL-carbapenemase- 
producing E. coli (non–MBL-Ec), based on the presence of 
any MBL gene including blaNDM, blaVIM, or blaIMP detected 
by sequencing.

Whole-Genome Sequencing

Whole-genome sequencing was performed on all isolates at 
UTHealth, Houston, Texas, USA (HiSeq 4000, NextSeq 2000, 
and MiSeq; Illumina; San Diego, CA, USA); the Molecular 
Resource Facility, Rutgers, New Brunswick, New Jersey, USA 
(NextSeq 500; Illumina); the University of El Bosque, Bogota, 
Colombia (MiSeq, HiSeq 4000, and NextSeq 2000; Illumina); 
and BGI Genomics, BGI-Shenzhen, Shenzhen, China (HiSeq 
X; Illumina), as previously described [10]. Draft genomes 
were assembled by use of SPAdes, version 3.13.0. Escherichia 
coli multilocus sequence types (STs) were determined 
using mlst v2.22 (github.com/tseemann/mlst), whereas 
phylogroups, serotypes, and fimH types were examined using 
ClermonTyping v21.3 [14], ECTyper v1.0.0 [15], and 
FimTyper v1.0 [16], respectively.

Resistance genes were determined using AMRFinderPlus, 
version 3.10.20 [17], and ARIBA, version 2.14.6 [18]. Core ge-
nome phylogeny was generated by Snippy, version 4.6.0, and 
the single nucleotide polymorphisms (SNPs) in the prophages, 
repeated regions, and insertion elements were filtered as previ-
ously described [10]. A maximum likelihood phylogenetic tree 
was constructed in RAxML, version 8.2.4 [19]. The genomes se-
quenced in this study were deposited in GenBank (accession 
number PRJNA658369).

Outcomes

Mortality outcomes were captured through 90 days after dis-
charge. We analyzed mortality at 30 and 90 days from index 
culture. Other relevant outcome data included the presence 
of clinical response, time from culture to discharge, and dis-
charge disposition. We assessed mortality outcomes across 
the entire cohort and separately among those who met infec-
tion criteria. The remainder of the outcomes analyses were per-
formed only on the subset of patients who met the study 
definition for infection.

The primary outcome measure was a desirability of outcome 
ranking (DOOR) [20], as previously described [10]. Briefly, at 
30 days following the index culture, the following outcomes 
were assessed: (1) deleterious effects, including absence of clin-
ical response, prolonged hospitalization (≥30 days after first 
positive culture or readmission within 30 days); (2) adverse 
events, including new renal failure and/or Clostridioides difficile 
infection; and (3) survival at 30 days after the index culture. The 
absence of clinical response was defined as no improvement or 
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resolution of symptoms at either 30 days or at the time of dis-
charge, when discharge occurred before 30 days from the index 
culture (details are shown in the Supplementary Methods). 
These data were used to categorize DOOR rankings at 30 
days as (1) alive with no events, (2) alive with 1 event, (3) alive 
with 2 or more events, or (4) dead. Post hoc, to examine other 
factors potentially related to mortality outcomes, we assessed 
the association between age, STs, and bacteremia and the out-
come of 30-day mortality.

Antimicrobial Therapy

The receipt of antimicrobial therapy with potential activity 
against CP-Ec was evaluated, during either empiric or definitive 
therapy. Additionally, the time to receipt of a presumed active 
antibiotic according to local susceptibility data was analyzed by 
MBL group. Details of these analyses are shown in the 
Supplementary Methods.

Statistical Analysis

We conducted descriptive statistics of patient demographics, 
clinical characteristics, molecular and bacterial characteristics, 
and outcomes. We examined patient demographics, clinical 
factors, molecular and bacterial characteristics, and outcomes 
by MBL status, using Pearson chi-square tests, and differences 
in distributions of continuous variables by MBL status using 
Kruskal-Wallis tests.

We calculated a DOOR probability by evaluating 30-day 
composite outcomes by MBL status using pairwise DOOR 
analyses. Each DOOR analysis estimates the probability that a 
randomly selected patient in 1 group would have a better over-
all outcome than a patient in the comparison group. A proba-
bility where the confidence interval (CI) crosses 50% implies no 
difference in the distribution of composite outcomes and is not 
considered statistically significant. Separately, 30- and 90-day 
mortality by MBL status was examined using Pearson 
chi-square analysis. We conducted all analyses in SAS, version 
9.4 (SAS Institute Inc., Cary, NC, USA). Data visualizations of 
molecular bacterial characteristics were created using Tableau 
Desktop. CRACKLE-2 was registered with ClinicalTrials.gov 
(NCT03646227).

RESULTS

Clinical Epidemiology

From 1 June 2017 to 31 July 2018, 196 unique patients were en-
rolled with an eligible first culture positive for CRE E. coli that 
was confirmed using WGS. Of these, 114 (58%) unique patients 
from 26 hospitals in 6 countries had a carbapenemase gene de-
tected and were included here (Table 1).

The median age of enrolled patients was 60 years (quartile 
[Q] 1: 42 years; Q3: 74 years), and half were male. Most patients 
(70%; 80/114) were admitted from home, and cultures with 

CP-Ec were isolated a median of 6 (Q1: 1; Q3: 7) days after ad-
mission. Isolates were from various sources, most commonly 
urine (34%; 39/114) or blood (21%, 24/114).

Forty-three percent of isolates (49/114) harbored a gene en-
coding for an MBL, whereas 57% (65/114) represented non– 
MBL-Ec. Patient demographics including age and sex were 
similar among MBL-Ec and non–MBL-Ec. Geographic varia-
tions were evident (Table 1) (P < .0001), with MBL-Ec found 
most commonly in isolates from China (23/24); non–MBL-Ec 
isolates predominating in the United States (21/25), 
Colombia (21/26), and Singapore (4/4); and both MBL-Ec 
(16/34; 47%) and non–MBL-Ec isolates (18/34; 53%) detected 
in Lebanon. Half of the isolates (57/114) accompanied a clinical 
episode that met the definition for infection. Compared with 
non–MBL-Ec isolates, patients with MBL-Ec were less likely 
to meet criteria for infection (39% vs 58%; P = .04). Patients 
harboring MBL-Ec isolates were less acutely ill at the time of 
first positive culture than those with non–MBL-Ec (median 
PBS: 0 [Q1: 0; Q3: 2] vs 2 [Q1: 0; Q3: 3]; P = .005) but had sim-
ilar summary comorbidity scores (median Charlson comorbid-
ity index: 2 [Q1: 0; Q3: 3] vs 2 [Q1: 1; Q3: 4]). Among 
patients meeting infection criteria, Pitt scores remained lower 
among those with MBL-Ec than those with non–MBL-Ec 
(median of 0 [Q1: 0; Q3: 2] vs median of 2 [Q1: 0; Q3: 3]; 
P = .0007).

The source of culture was associated with MBL status 
(Table 1) (P = .02). Isolates from blood were more likely to 
be non–MBL-Ec than MBL-Ec (32% vs 6%); conversely, isolates 
from urine were more often MBL-Ec (41% MBL-Ec vs 29% 
non–MBL-Ec).

Molecular Epidemiology

The bacterial population structure of isolates in this study is 
shown in Figure 1. Several regional variations were observed 
in ST and molecular characteristics including carbapenemases 
(Figure 2A) and extended-spectrum β-lactamase (ESBL) genes 
(Figure 2B) by country. Among MBLs harboring CP-Ec iso-
lates, blaNDM was the most common carbapenemase 
(Table 2) (47/49; 96%), predominantly blaNDM-5 (38/49; 
78%). Among non–MBL-Ec, blaKPC-2 was the most common 
carbapenemase gene (30/65; 46%). Sequence types also varied 
by MBL status (P < .0001). The high-risk ST167 was more com-
mon among MBL than non-MBL isolates (31% vs 2%), while 
ST131 was observed more frequently among non-MBL isolates 
(20% vs 4%). Serotypes also varied by MBL status; H4:025 was 
the most common and was associated with non-MBL isolates 
(18% vs 4%), whereas H9:O101 was more frequently observed 
among MBL isolates (22% vs 3%). Acquired ESBL genes were 
common among CP-Ec (59/114; 52%), with blaCTX-M-15 the 
most common among both MBL (16/49; 33%) and non-MBL 
(22/65; 34%) isolates.
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Outcomes

Mortality at 30 days among all patients was 16% (18/114) and 
was higher in patients with non–MBL-Ec than those with 
MBL-Ec isolates (23% vs 6%; P = .02). All-cause 90-day mortal-
ity was 22% (25/114) and remained associated with non– 
MBL-Ec isolates (32% vs 8%; P = .003).

Patient outcomes among those who met the definition for in-
fection (n = 57) are detailed in Table 3. Most had documented 
clinical response (39/57; 68%), and this was not associated with 
MBL status. Thirty-day mortality among infected patients was 
18% (10/57) and was higher in patients with non–MBL-Ec than 
in those with MBL-Ec (10/38 vs 0/19; P = .02). At 90 days, 15 
patients had died (26%), all of whom were infected with 
non–MBL-Ec (P = .001). In DOOR analysis (Table 3), the prob-
ability of a better outcome for a randomly selected patient with 

MBL-Ec compared with a patient with non–MBL-Ec was 62% 
(95% CI: 48.2–74.3%). Mortality varied by ST, with no deaths 
in high-risk clones ST131 or ST167 and 3 deaths in ST410. 
Age was associated with mortality, with a median (Q1, Q3) 
age of 66 (63, 78) years among those who died by 30 days, 
compared with a median age of 54 (37, 68) years among those 
alive at 30-day follow-up (P = .03). Among patients with 
bacteremia (n = 24), death by 30 days was not associated with 
MBL status (0/3 deaths in MBL-Ec, 5/21 deaths in non– 
MBL-Ec; P = .34).

Among patients who met criteria for infection (n=57), re-
ceipt of antibiotics with potential activity against CP-Ec, receipt 
of and time to receipt of presumed effective antibiotic based on 
local susceptibility testing are summarized in Supplementary 
results.

Table 1.  Clinical Characteristics of Patients With Carbapenemase-Producing Escherichia coli (CP-Ec) Isolates

Total Patients (n = 114) MBL-Ec (n = 49) Non–MBL-Ec (n = 65) P a

Age, median (Q1, Q3), y 60 (42, 74) 60 (37, 74) 61 (45, 76) .97

Sex, male, n (%) 57 (50%) 21 (43%) 36 (55%) .19

Countryb <.0001c

Australia 1 (1%) 1 (2%) 0 (0%)

China 24 (21%) 23 (47%) 1 (2%)

Colombia 26 (23%) 5 (10%) 21 (32%)

Lebanon 34 (30%) 16 (33%) 18 (28%)

Singapore 4 (4%) 0 (0%) 4 (6%)

United States 25 (22%) 4 (8%) 21 (32%)

Charlson comorbidity index,d median (Q1, Q3) 2 (0, 3) 2 (0, 3) 2 (1, 4) .12

Pitt bacteremia score,e median (Q1, Q3) 2 (0, 3) 0 (0, 2) 2 (0, 3) .005

Admitted from, n (%) .10f

Home 80 (70%) 32 (65%) 48 (74%)

Hospital transfer 28 (25%) 16 (33%) 12 (18%)

Long-term care 4 (4%) 0 (0%) 4 (6%)

Transfer from outside country? 2 (2%) 1 (2%) 1 (2%)

Location on day of positive culture, n (%) .10

Intensive care unit 32 (28%) 13 (27%) 19 (29%)

Medical/surgical ward 62 (40%) 29 (59%) 33 (51%)

Emergency room 15 (13%) 3 (6%) 12 (18%)

Other 5 (4%) 4 (8%) 1 (2%)

Days from admittance to positive culture,f median (Q1, Q3) 6 (1, 17) 6 (1, 15) 6 (0, 21) .67

Culture source, n (%)

Blood 24 (21%) 3 (6%) 21 (32%) .02f

Urine 39 (34%) 20 (41%) 19 (29%)

Respiratory 10 (9%) 6 (12%) 4 (6%)

Wound 8 (7%) 4 (8%) 4 (6%)

Non-wound abdominal 12 (11%) 6 (12%) 6 (9%)

Other 21 (18%) 10 (20%) 11 (17%)

Isolates meeting infection criteria, n (%) 57 (50%) 19 (39%) 38 (58%) .04

Abbreviations: MBL, metallo-β-lactamase gene; non–MBL, no metallo-β-lactamase gene present; Q, quartile.  
aStatistical tests performed include chi-square test for categorical variables, except in the case of low expected cell counts when Fisher’s exact was used, and Kruskal-Wallis test for 
differences in distributions for continuous variables. P values compare isolates harboring MBL with those not harboring MBL.  
bPercentages may total >100% due to rounding.  
cFisher’s exact test conducted when any expected cell counts were <5.  
dA chronic comorbidity score ranging from 0 to 37, with higher scores indicating the presence of more comorbidities.  
eAn acute severity of illness score, with higher scores indicating more severe illness.  
fTime to first positive culture indicates the number of days from admission to the collection date of the index culture, with 0 indicating that the index culture was obtained on the day of 
admission.
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DISCUSSION

In this large, multinational cohort of CP-Ec, isolates harboring 
MBLs were clustered in specific geographic regions and among 

specific bacterial genotypes. In this study, MBL-Ec isolates were 
more frequently isolated from urine, less frequently met criteria 
for infection, and patients infected with MBL-Ec demonstrated 

Figure 1. Phylogenetic population structures of CP-Ec isolates. blaCarb = carbapenemase gene detected. Abbreviations: CP-Ec, carbapenemase-producing Escherichia coli; 
DOOR, desirability of outcome ranking; IMP, imipenemase; KPC, Klebsiella pneumoniae complex; MBL, metallo-β-lactamase; NA: not applicable; NDM, New Delhi metall-
o-β-lactamase; OXA, OXA-type carbapenemase; ST, sequence type; VIM, Verona integron-encoded.
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lower 30- and 90-day mortality than those infected with non– 
MBL-Ec. Using DOOR analyses, similar patient outcomes be-
tween MBL- and non–MBL-Ec were observed.

The presence of MBL in CP-Ec isolates was associated with 
several characteristics of the patients from whom they were 
identified. First, carbapenemase enzymes were strongly associ-
ated with the geographic origin of the source patient. In our 
analysis, carbapenem resistance in E. coli was mediated by 
MBLs in China. In contrast, in the United States, Colombia, 
and Singapore, carbapenem resistance by carbapenemases 
was primarily mediated by non–MBL-Ec. These data were 
largely consistent with previous studies [21–23]. Patients 
from Lebanon had both non-MBL and MBL carbapenemases. 
We cannot comment substantially on geographic variations 
in IMP or VIM as we had limited isolates with these MBL types; 
however, recent literature suggests that these carbapenemases 
are most prevalent in countries such as Greece, Taiwan, and 
Japan [24–26], where we did not enroll patients. Both globali-
zation and community spread of CP-Ec in different geographic 
regions result in rapidly changing epidemiology; this necessi-
tates a structured, prospective, and continuous approach to 
monitor trends in the geography of CP-Ec.

Second, carbapenemases were associated with specific back-
ground bacterial characteristics and ST of E. coli. We observed 
that MBL-Ec isolates were associated with ST167 and ST410, 

primarily harboring a blaNDM gene. The clustering of 
blaNDM-5, specifically on ST167 and ST410, has been recently 
described in both local and global studies [27, 28]. 
Conversely, non–MBL-Ec, particularly blaKPC, most frequently 
was harbored by ST131. These findings are consistent with ear-
lier analyses; since the emergence of E. coli with blaKPC with 
ST131 was first described in the United States [29], several stud-
ies have described the global emergence of CP-Ec with blaKPC, 
facilitated by the efficient spread of ST131 [27, 30–32]. The un-
derlying mechanisms leading to clustering of specific carbape-
nemases in specific STs are not fully elucidated and require 
further investigation. Additionally, the detection of ESBL genes 
in addition to carbapenemase genes was common among both 
MBL-Ec and non–MBL-Ec. The efficient carriage of both ESBL 
and carbapenemase by high-risk E. coli strains is of particular 
concern because of the high potential for rapid spread and 
dearth of therapeutic options. These data raise questions 
about the unique biological underpinnings of E. coli that allow 
for high-risk E. coli clones to efficiently acquire multiple 
multidrug-resistance genes.

Finally, the clinical scenarios associated with MBL-Ec 
differed from those with non–MBL-Ec. Patients with MBL-Ec 
less frequently met infection criteria than those with non– 
MBL-Ec. Correspondingly, patients with MBL-Ec had a lower 
acuity of illness and the culture source was more often from 

Figure 2. Regional differences in molecular characteristics of carbapenemase-producing E. coli. A, Circles determined by country (color, see legend) and distinct count of 
subjects (size of circle) broken down by ST and carbapenemase. B, Circles determined by country (color) and distinct count of subjects (size) broken down by sequence type 
versus blaESBL. The CTX-M-14 group includes 1 subject with CTX-M-14 and SHV-12 detected. The other CTX-M group includes 1 individual with CTX-M-65, 1 with CTX-M-55 
and CTX-M-65, 1 with CTX-M-24, and 2 with CTX-M-27. Abbreviations: ESBL, extended-spectrum β-lactamase; IMP, imipenemase; KPC, Klebsiella pneumoniae complex; MBL, 
metallo-β-lactamase; NDM, New Delhi metallo-β-lactamase; OXA, OXA-type carbapenemase; ST, sequence type; VIM, Verona integron-encoded.
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Table 2.  Bacterial Characteristics of Carbapenemase-Producing Escherichia coli Isolates

Total (N = 114) MBL (n = 49) Non-MBL (n = 65) P (α = .05)a

Carbapenemaseb

blaIMP-4 1 (1%) 1 (2%) 0 (0%)

blaKPC-2 31 (27%) 1 (2%)c 30 (46%)

blaKPC-3 11 (10%) 0 (0%) 11 (17%)

blaNDM-5 38 (33%) 38 (78%) 0 (0%)

blaNDM-1 7 (6%) 7 (14%) 0 (0%)

blaNDM-7 1 (1%) 1 (2%) 0 (0%)

blaNDM-9 1 (1%) 1 (2%) 0 (0%)

blaOXA-48 10 (9%) 0 (0%) 10 (15%)

blaOXA-181 9 (8%) 0 (0%) 9 (14%)

blaOXA-232 1 (1%) 0 (0%) 2 (2%)

blaVIM-24 1 (1%) 1 (2%)c 0 (0%)

Sequence type <.0001d

410 17 (15%) 6 (12%) 11 (17%)

167 16 (14%) 15 (31%) 1 (2%)

131 15 (13%) 2 (4%) 13 (20%)

405 9 (8%) 4 (8%) 5 (8%)

648 6 (5%) 3 (6%) 3 (5%)

1193 4 (4%) 0 (0%) 4 (6%)

10 3 (3%) 0 (0%) 3 (5%)

101 3 (3%) 1 (2%) 2 (3%)

448 3 (3%) 3 (6%) 0 (0%)

46 3 (3%) 2 (4%) 1 (2%)

69 3 (3%) 1 (2%) 2 (3%)

1722 2 (2%) 0 (0%) 2 (3%)

354 2 (2%) 0 (0%) 2 (3%)

361 2 (2%) 2 (4%) 0 (0%)

617 2 (2%) 1 (2%) 1 (2%)

73 2 (2%) 0 (0%) 2 (3%)

Other 22 (19%) 9 (18%) 13 (20%)

Serotype .0019e

H4:025 14 (12%) 2 (4%) 12 (18%)

H9:O101 13 (11%) 11 (22%) 2 (3%)

H6:O102 10 (9%) 5 (10%) 5 (8%)

H21:O8 8 (7%) 1 (2%) 7 (11%)

H10:O101 4 (4%) 1 (2%) 3 (5%)

H5:O75 4 (4%) 0 (0%) 4 (6%)

H6:O45 4 (4%) 1 (2%) 3 (5%)

H9:O8 4 (4%) 2 (4%) 2 (3%)

Other 53 (46%) 26 (23%) 27 (38%)

ESBL not detected 55 (48%) 20 (41%) 35 (54%)

ESBL detectedf 59 (52%) 29 (59%) 30 (46%) .17

blaCTX-M-15 38 (33%) 16 (33%) 22 (34%)

blaCTX-M-55 10 (9%) 8 (16%) 2 (3%)

blaCMY-42 8 (7%) 3 (6%) 5 (8%)

blaCTX-M-14 4 (4%) 3 (6%) 1 (2%)

blaCTX-M-24 2 (2%) 0 (0%) 2 (3%)

blaCTX-M-27 2 (2%) 0 (0%) 2 (3%)

blaCTX-M-65 1 (1%) 1 (2%) 0 (0%)

Data are presented as n (%). Values displayed in table if containing at least 1% of the cohort for each category.  

Abbreviations: ESBL, extended-spectrum β-lactamases; IMP, imipenemase; KPC, Klebsiella pneumoniae complex; MBL, metallo-β-lactamase; NDM, New Delhi metallo-β-lactamase; OXA, 
OXA-type carbapenemase; VIM, Verona integron-encoded.  
aStatistical tests performed include chi-square test unless otherwise noted. P values compare isolates harboring MBL with those not harboring MBL.  
bAmong the entire cohort, there were additionally 1 of each of the following carbapenemases: blaNDM-7, blaNDM-9, blaOXA-232, blaIMP-4, blaVIM-24.  
cOne isolate had both KPC-2 and VIM-24 classified as MBL; because of this, column totals to 50 carbapenemases detected among n = 49 patients.  
dFor this analysis, all sequence types that were present in <10% of the total cohort were grouped into an “other” category for Fisher’s exact analysis.  
eFor this analysis, all serotypes that were present in <10% of the total cohort were grouped into a “other” category for Fisher’s exact test.  
fAmong the entire cohort, there were additionally the following acquired ESBLs detected: 2 blaCTX-M-24 and 2 blaCTX-M-27 in non-MBL isolates and blaCTX-M-65 detected in 1 MBL isolate.
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urine, whereas patients with non–MBL-Ec had a higher acuity 
of illness and more bloodstream infections. We observed in-
creased mortality in patients with non–MBL-Ec that could 
not be completely explained by the higher rates of infection 
alone, since increased mortality among patients with non– 
MBL-Ec persisted, even when limiting analysis to those who 
met infection criteria. The reasons for these mortality differ-
ences are unclear. Bacteremia may be an important predictor 
of mortality due to the severity of illness with bacteremia com-
pared with urinary tract infection, and this may be incomplete-
ly captured by the PBS. This study is limited to univariate 
analysis, but future studies should examine whether bacteremia 
remains an independent predictor of mortality from CP-Ec in-
fections. Additionally, most patients in our study with MBL-Ec 
were from China, and these mortality differences are consistent 
with lower mortality seen in patients from China in an interna-
tional cohort study of carbapenem-resistant Pseudomonas aer-
uginosa [33] and with outcomes from CRACKLE-2 Klebsiella 
pneumoniae isolates [10]. This suggests that differences in pa-
tient characteristics and healthcare systems and supportive 
care in various regions may confound the mortality differences 
observed here. Importantly, there may also exist a difference in 
MBL-Ec and non–MBL-Ec reservoirs, resulting in the emer-
gence of community spread of MBL-Ec in certain parts of the 
world, suggested by recent work showing rapid increases in fe-
cal colonization with MBL-Ec in China [34].

Current data comparing outcomes of CP-Ec by carbapene-
mase type are lacking. We observed collinearity between geo-
graphic regions, culture sources, acuity of illness, and MBL 

status; because of the small sample size and infrequent mortal-
ity in the MBL group, we were unable to determine if MBL car-
riage in E. coli was an independent predictor of outcomes. 
Future, larger studies are needed that can account for potential 
confounders to evaluate the impact of carbapenemase type on 
patient outcomes and confirm our findings.

Limitations

This study has several important limitations. First, while we re-
cruited patients from various global regions, patients with 
CP-Ec originated from a limited number of centers in 6 coun-
tries. We recognize that the lack of inclusion of other regions 
with known high rates of multidrug antimicrobial resistance 
limits the generalizability to those global regions. Second, this 
was an observational study, and given the waived requirement 
to obtain informed consent, only data collected per standard of 
care were available. However, the waiver of informed consent 
allowed for consecutive inclusion of patients and minimized 
the risk of selection bias. Third, the DOOR analyses may 
have been underpowered to detect a true difference in the out-
comes of MBL-Ec versus non–MBL-Ec isolates in this study 
since we only examined those who met criteria for infection, re-
sulting in a small sample size.

Conclusions

In summary, this study describes the emergence of CP-Ec in 
many regions across the globe, including among high-risk 
strains of E. coli such as ST131, 167, and 410. Geographic, bac-
terial, and clinical features were associated with 

Table 3. Clinical Outcomes of Patients With Carbapenemase-Producing Escherichia coli (CP-Ec) Infection

Total Patients  
(N = 57)

MBL-Ec  
(n = 19)

Non–MBL-Ec  
(n = 38) P (α = 0.05)a

Clinical response 39 (68%) 14 (74%) 25 (66%) .76

Disposition after dischargeb .06

Home 38 (67%) 16 (84%) 22 (58%)

Other care facility 5 (9%) 2 (11%) 3 (8%)

Hospice or death 14 (25%) 1 (5%) 13 (34%)

Time from culture to discharge, median days (Q1, Q3) 18 (7, 25) 21 (6, 54) 17.5 (8, 24) .35c

30-Day mortality 10 (18%) 0/19 (0%) 10/38 (26%) .02

90-Day mortality 15 (26%) 0/19 (0%) 15/38 (39%) .001

DOOR outcomes  
(30 d)

62.0%  
(48.2%-74.3%)d

Alive without events 25 (44%) 10 (53%) 15 (39%)

Alive with 1 event 11 (19%) 4 (21%) 7 (18%)

Alive with 2 or 3 events 11 (19%) 5 (26%) 6 (16%)

Dead 10 (18%) 0 (0%) 10 (26%)

Data are presented as n (%).  

Abbreviations: DOOR, desirability of outcome ranking; MBL, metallo-β-lactamase; Q, quartile.  
aStatistical tests performed include chi-square test for categorical variables, except in the case of low expected cell counts when Fisher’s exact was used, and Kruskal-Wallis test for 
differences in distributions for continuous variables. P values compare isolates harboring MBL with those not harboring MBL.  
bDisposition to “other care facility” includes 3 transfers to another hospital, 1 transfer to long-term care, 1 transfer to long-term acute care.  
cKruskal-Wallis test.  
dDOOR probability (95% confidence interval), or the probability that a randomly selected patient in 1 group would have a better overall outcome than a randomly selected patient in the 
comparison group.
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MBL-harboring CP-Ec. Patients with non-MBL isolates had 
higher mortality, but this may be confounded by differences 
in illness acuity and region. With limited novel therapeutic op-
tions in the pipeline, and the potential for further global dis-
semination of carbapenem resistance among high-risk E. coli 
strains, ongoing studies of CP-Ec epidemiology and outcomes 
are of paramount importance.
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Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding 
author.
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