58 research outputs found

    Results of Posterior Dislocation of Elbow Associated with Bony and Soft Tissue Injury

    Get PDF
    Elbow trauma is challenging to manage by virtue of its complex articular structure and capsuloligamentous and musculotendinous arrangements. We included 17 patients with elbow dislocation and associated injuries in this study. The study protocol included early elbow reduction and planned fixation of the medial or lateral condyle, coronoid and radial head. The sample was 73% male and 27% female with mean duration follow-up of 8 months, and mean age of 37 years. The mean Mayo Elbow Performance Score was 96 points at conclusion of follow-up, indicating an excellent result in 14 patients. Whenever the radial head was excised, we performed a strong transosseous ligamentous repair of the medial and lateral collateral ligaments. Fixation of the coronoid is essential for elbow stability. A small avulsed fragment can be fixed using an ACL jig. We found this technique very useful. Early planned intervention, stable fixation, and repair provide sufficient stability and enhance functional outcomes

    Unleashing shear: Role of intercellular traction and cellular moments in collective cell migration

    Get PDF
    In the field of endothelial biology, the term “shear forces” is tied to the forces exerted by the flowing blood on the quiescent cells. But endothelial cells themselves also exert physical forces on their immediate and distant neighbors. Specific factors of such intrinsic mechanical signals most relevant to immediate neighbors include normal (Fn) and shear (Fs) components of intercellular tractions, and those factors most relevant to distant neighbors include contractile or dilatational (Mc) and shear (Ms) components of the moments of cytoskeletal forces. However, for cells within a monolayer, Fn, Fs, Mc, and Ms remain inaccessible to experimental evaluation. Here, we present an approach that enables quantitative assessment of these properties. Remarkably, across a collectively migrating sheet of pulmonary microvascular endothelial cells, Fs was of the same order of magnitude as Fn. Moreover, compared to the normal components (Fn, Mc) of the mechanical signals, the shear components (Fs, Ms) were more distinctive in the cells closer to the migration front. Individual cells had an innately collective tendency to migrate along the axis of maximum contractile moment e a collective migratory process we referred to as cellular plithotaxis. Notably, larger Fs and Ms were associated with stronger plithotaxis, but dilatational moment appeared to disengage plithotactic guidance. Overall, cellular plithotaxis was more strongly associated with the “shear forces” (Fs, Ms) than with the “normal forces” (Fn, Mc). Finally, the mechanical state of the cells with fast migration speed and those with highly circular shape were reminiscent of fluid-like and solid-like matter, respectively. The results repeatedly pointed to neighbors imposing shear forces on a cell as a highly significant event, and hence, the term “shear forces” must include not just the forces from flowing fluid but also the forces from the substrate and neighbors. Collectively, these advances set the stage for deeper understanding of mechanical signaling in cellular monolayers.Osteopathic Medicin

    The International Intellectual Property Commercialization Council’s 3rd Annual U.S. Conference: The State of Innovation in the Union

    Get PDF
    The International Intellectual Property Commercialization Council (“IIPCC”) presented its third annual policy conference at the United States Capitol on May 6, 2019. The conference’s theme explored the question of “what is the state of innovation in the United States?” Panelists included The Honorable Andrei Iancu – Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office; Dr. Carl J. Schramm – University Professor, Syracuse University and Former President of the Ewing Marion Kauffman Foundation; Mr. Patrick Kilbride – Senior Vice President of the Global Innovation Policy Center (“GIPC”) at the U.S. Chamber of Commerce; and Mr. Colman Ragan – Vice President and General Counsel, North America IP Litigation at Teva Pharmaceuticals, who all shared their perspectives on the state of innovation. A lead off panel including local entrepreneurs, intellectual property specialists, federal government specialists, and academics allowed this panel to provide a “boots on the ground” perspective

    Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods

    Get PDF
    Fibre reinforced composites have recently received much attention as potential bone fracture fixation applications. Bioresorbable composites based on poly lactic acid (PLA) and phosphate based glass fibre were investigated according to ion release, degradation, biocompatibility and mechanical retention profiles. The phosphate based glass fibres used in this study had the composition of 40P2O5-24MgO-16CaO-16Na2O-4Fe2O3 in mol% (P40). The degradation and ion release profiles for the composites showed similar trends with the amount of sodium and orthophosphate ions released being greater than the other cations and anions investigated. This was attributed to low Dietzal's field strength for the Na(+) in comparison with Mg(2+) and Ca(2+) and breakdown of longer chain polyphosphates into orthophosphate ions. P40 composites exhibited good biocompatibility to human mesenchymal stem cells (MSCs), which was suggested to be due to the low degradation rate of P40 fibres. After 63 days immersion in PBS at 37 °C, the P40 composite rods lost ~1.1% of mass. The wet flexural, shear and compressive strengths for P40 UD rods were ~70%, ~80% and ~50% of their initial dry values after 3 days of degradation, whereas the flexural modulus, shear and compressive strengths were ~70%, ~80%, and ~65% respectively. Subsequently, the mechanical properties remained stable for the duration of the study at 63 days. The initial decrease in mechanical properties was attributed to a combination of the plasticisation effect of water and degradation of the fibre-matrix interface, with the subsequent linear behaviour being attributed to the chemical durability of P40 fibres. P40 composite rods showed low degradation and ion release rates, good biocompatibility and maintained mechanical properties similar to cortical bone for the duration of the study. Therefore, P40 composite rods have huge potential as resorbable intramedullary nails or rods

    Integrated Pharmacodynamic Analysis Identifies Two Metabolic Adaption Pathways to Metformin in Breast Cancer.

    Get PDF
    Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer. We show metformin reduces the levels of mitochondrial metabolites, activates multiple mitochondrial metabolic pathways, and increases 18-FDG flux in tumors. Two tumor groups are identified with distinct metabolic responses, an OXPHOS transcriptional response (OTR) group for which there is an increase in OXPHOS gene transcription and an FDG response group with increased 18-FDG uptake. Increase in proliferation, as measured by a validated proliferation signature, suggested that patients in the OTR group were resistant to metformin treatment. We conclude that mitochondrial response to metformin in primary breast cancer may define anti-tumor effect

    Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes.</p> <p>Results</p> <p>Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of <it>Cyp8b1</it>, a regulatory enzyme of bile acid synthesis, and the <it>Abcb11 </it>bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle <it>Il6 </it>and <it>Dio2 </it>mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH) in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of <it>Abcb11 </it>and <it>Dio2 </it>identifies novel strong positional candidate genes as they map within the quantitative trait loci (QTL) regions detected previously in crosses between the Lean and Fat mice.</p> <p>Conclusion</p> <p>We identified novel candidate molecular targets and metabolic changes which can at least in part explain resistance to obesity development in the Lean line. The major difference between the Lean and Fat mice was in increased liver cholesterol biosynthesis gene mRNA expression, bile acid metabolism and changes in selected muscle genes' expression in the Lean line. The liver <it>Abcb11 </it>and muscle <it>Dio2 </it>were identified as novel positional candidate genes to explain part of the phenotypic difference between the Lean and Fat lines.</p

    Study protocol: a multi-centre randomised study of induction chemotherapy followed by capecitabine +/- nelfinavir with high- or standard-dose radiotherapy for locally advanced pancreatic cancer (SCALOP-2)

    Get PDF
    Background Induction chemotherapy followed by chemoradiation is a treatment option for patients with locally advanced pancreatic cancer (LAPC). However, overall survival is comparable to chemotherapy alone and local progression occurs in nearly half of all patients, suggesting chemoradiation strategies should be optimised. SCALOP-2 is a randomised phase II trial testing the role of radiotherapy dose escalation and/or the addition of the radiosensitiser nelfinavir, following induction chemotherapy of gemcitabine and nab-paclitaxel (GEMABX). A safety run-in phase (stage 1) established the nelfinavir dose to administer with chemoradiation in the randomised phase (stage 2). Methods Patients with locally advanced, inoperable, non-metastatic pancreatic adenocarcinoma receive three cycles of induction GEMABX chemotherapy prior to radiological assessment. Those with stable/responding disease are eligible for further trial treatment. In Stage 1, participants received one further cycle of GEMABX followed by capecitabine-chemoradiation with escalating doses of nelfinavir in a rolling-six design. Stage 2 aims to register 262 and randomise 170 patients with responding/stable disease to one of five arms: capecitabine with high- (arms C + D) or standard-dose (arms A + B) radiotherapy with (arms A + C) or without (arms B + D) nelfinavir, or three more cycles of GEMABX (arm E). Participants allocated to the chemoradiation arms receive another cycle of GEMABX before chemoradiation begins. Co-primary outcomes are 12-month overall survival (radiotherapy dose-escalation question) and progression-free survival (nelfinavir question). Secondary outcomes include toxicity, quality of life, disease response rate, resection rate, treatment compliance, and CA19–9 response. SCALOP-2 incorporates a detailed radiotherapy quality assurance programme. Discussion SCALOP-2 aims to optimise chemoradiation in LAPC and incorporates a modern induction regimen

    Characterisation of CorGlaes (R) Pure 107 fibres for biomedical applications

    Get PDF
    A degradable ultraphosphate (55 mol % P2O5) quinternary phosphate glass composition has been characterised in terms of its chemical, mechanical and degradation properties both as a bulk material and after drawing into fibres. This glass formulation displayed a large processing window simplifying fibre drawing. The fibres displayed stiffness and strength of 65.5 ± 20.8 GPa and 426±143 MPa. While amorphous discs of the glass displayed a linear dissolution rate of 0.004 mg cm−2 h−1 at 37 °C, in a static solution with a reduction in media pH. Once drawn into fibres, the dissolution process dropped the pH to &lt;2 in distilled water, phosphate buffer saline and corrected-simulated body fluid, displaying an autocatalytic effect with &gt;90 % mass loss in 4 days, about seven times faster than anticipated for this solution rate. Only cell culture media was able to buffer the pH taking over a week for full fibre dissolution, however, still four times faster dissolution rate than as a bulk material. However, at early times the development of a HCA layer was seen indicating potential bioactivity. Thus, although initial analysis indicated potential orthopaedic implant applications, autocatalysis leads to accelerating degradation in vitro
    corecore