605 research outputs found

    Quantum-Inspired Classification Based on Voronoi Tessellation and Pretty-Good Measurements

    Get PDF
    In quantum machine learning, feature vectors are encoded into quantum states. Measurements for the discrimination of states are useful tools for classification problems. Classification algorithms inspired by quantum state discrimination have recently been implemented on classical computers. We present a local approach combining Vonoroi-type tessellation of a training set with pretty-good measurements for quantum state discrimination

    A Quantum Binary Classifier based on Cosine Similarity

    Get PDF
    This proposal introduces the quantum implementation of a binary classifier based on cosine similarity between data vectors. The proposed quantum algorithm presents time complexity that is logarithmic in the product of the training set cardinality and the dimension of the vectors. It is based just on a suitable state preparation like the retrieval from a QRAM, a SWAP test circuit, and a measurement process on a single qubit. An implementation on an IBM quantum processor is presented

    Support vector machines with quantum state discrimination

    Get PDF
    We analyze possible connections between quantum-inspired classifications and support vector machines. Quantum state discrimination and optimal quantum measurement are useful tools for classification problems. In order to use these tools, feature vectors have to be encoded in quantum states represented by density operators. Classification algorithms inspired by quantum state discrimination and implemented on classic computers have been recently proposed. We focus on the implementation of a known quantum-inspired classifier based on Helstrom state discrimination showing its connection with support vector machines and how to make the classification more efficient in terms of space and time acting on quantum encoding. In some cases, traditional methods provide better results. Moreover, we discuss the quantum-inspired nearest mean classification

    Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp

    Get PDF
    In single-particle or intraparticle entanglement, two degrees of freedom of a single particle, e.g., momentum and polarization of a single photon, are entangled. Single-particle entanglement (SPE) provides a source of non classical correlations which can be exploited both in quantum communication protocols and in experimental tests of noncontextuality based on the Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena. Here, we show that single-particle entangled states of single photons can be produced from attenuated sources of light, even classical ones. To experimentally certify the entanglement, we perform a Bell test, observing a violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one hand, we show that this entanglement can be achieved even in a classical light beam, provided that first-order coherence is maintained between the degrees of freedom involved in the entanglement. On the other hand, we prove that filtered and attenuated light sources provide a flux of independent SPE photons that, from a statistical point of view, are indistinguishable from those generated by a single photon source. This has important consequences, since it demonstrates that cheap, compact, and low power entangled photon sources can be used for a range of quantum technology applications

    Evidence of Asymmetry in SN 2007rt, a Type IIn Supernova

    Get PDF
    An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.Comment: Submitted to A&A on 4/2/2009. Accepted by A&A on 17/5/2009.15 pages plus 3 pages of online materia

    The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems

    Get PDF
    Reforesting and managing ecosystems have been proposed as ways to mitigate global warming and offset anthropogenic carbon emissions. The intent of our opinion piece is to provide a perspective on how well plants and ecosystems sequester carbon. The ability of individual plants and ecosystems to mine carbon dioxide from the atmosphere, as defined by rates and cumulative amounts, is limited by laws of physics and ecological principles. Consequently, the rates and amount of net carbon uptake are slow and low compared to the rates and amounts of carbon dioxide we release by fossil fuels combustion. Managing ecosystems to sequester carbon can also cause unintended consequences to arise. In this paper, we articulate a series of key take-home points. First, the potential amount of carbon an ecosystem can assimilate on an annual basis scales with absorbed sunlight, which varies with latitude, leaf area index and available water. Second, efforts to improve photosynthesis will come with the cost of more respiration. Third, the rates and amount of net carbon uptake are relatively slow and low, compared to the rates and amounts and rates of carbon dioxide we release by fossil fuels combustion. Fourth, huge amounts of land area for ecosystems will be needed to be an effective carbon sink to mitigate anthropogenic carbon emissions. Fifth, the effectiveness of using this land as a carbon sink will depend on its ability to remain as a permanent carbon sink. Sixth, converting land to forests or wetlands may have unintended costs that warm the local climate, such as changing albedo, increasing surface roughness or releasing other greenhouse gases. We based our analysis on 1,163 site-years of direct eddy covariance measurements of gross and net carbon fluxes from 155 sites across the globe

    A metallicity study of 1987A-like supernova host galaxies

    Full text link
    The origin of the blue supergiant (BSG) progenitor of Supernova (SN) 1987A has long been debated, along with the role that its sub-solar metallicity played. We now have a sample of 1987A-like SNe that arise from the core collapse (CC) of BSGs. The metallicity of the explosion sites of the known BSG SNe is investigated, as well as their association to star-forming regions. Both indirect and direct metallicity measurements of 13 BSG SN host galaxies are presented, and compared to those of other CC SN types. Indirect measurements are based on the known luminosity-metallicity relation and on published metallicity gradients of spiral galaxies. To provide direct estimates based on strong line diagnostics, we obtained spectra of each BSG SN host both at the SN explosion site and at the positions of other HII regions. Continuum-subtracted Ha images allowed us to quantify the association between BSG SNe and star-forming regions. BSG SNe explode either in low-luminosity galaxies or at large distances from the nuclei of luminous hosts. Therefore, their indirectly measured metallicities are typically lower than those of SNe IIP and Ibc. This is confirmed by the direct estimates, which show slightly sub-solar values (12+log(O/H)=8.3-8.4 dex), similar to that of the Large Magellanic Cloud (LMC), where SN 1987A exploded. However, two SNe (1998A and 2004em) were found at near solar metallicity. SNe IIb have a metallicity distribution similar to that of BSG SNe. Finally, the association to star-forming regions is similar among BSG SNe, SNe IIP and IIn. Our results suggest that LMC metal abundances play a role in the formation of some 1987A-like SNe. This would naturally fit in a single star scenario for the progenitors. However, the existence of two events at nearly solar metallicity suggests that also other channels, e.g. binarity, contribute to produce BSG SNe.Comment: 28 pages, 17 figures; accepted for publication (Astronomy and Astrophysics); abstract abridged for arXiv submissio

    A very faint core-collapse supernova in M85

    Full text link
    An anomalous transient in the early Hubble-type (S0) galaxy Messier 85 (M85) in the Virgo cluster was discovered by Kulkarni et al. (2007) on 7 January 2006 that had very low luminosity (peak absolute R-band magnitude MR of about -12) that was constant over more than 80 days, red colour and narrow spectral lines, which seem inconsistent with those observed in any known class of transient events. Kulkarni et al. (2007) suggest an exotic stellar merger as the possible origin. An alternative explanation is that the transient in M85 was a type II-plateau supernova of extremely low luminosity, exploding in a lenticular galaxy with residual star-forming activity. This intriguing transient might be the faintest supernova that has ever been discovered.Comment: 7 pages, 2 figures. Submitted to Nature "Brief Communication Arising" on 18 July 2007, Accepted on 17 August 2007. Arising from: Kulkarni et al. 2007, Nature, 447, 458-46

    SN 1999ga: a low-luminosity linear type II supernova?

    Full text link
    Type II-linear supernovae are thought to arise from progenitors that have lost most of their H envelope by the time of the explosion, and they are poorly understood because they are only occasionally discovered. It is possible that they are intrinsically rare, but selection effects due to their rapid luminosity evolution may also play an important role in limiting the number of detections. In this context, the discovery of a subluminous type II-linear event is even more interesting. We investigate the physical properties and characterise the explosion site of the type II SN 1999ga, which exploded in the nearby spiral galaxy NGC 2442. Spectroscopic and photometric observations of SN 1999ga allow us to constrain the energetics of the explosion and to estimate the mass of the ejected material, shedding light on the nature of the progenitor star in the final stages of its life. The study of the environment in the vicinity of the explosion site provides information on a possible relation between these unusual supernovae and the properties of the galaxies hosting them. Despite the lack of early-time observations, we provide reasonable evidence that SN 1999ga was probably a type II-linear supernova that ejected a few solar masses of material, with a very small amount of radioactive elements of the order of 0.01 solar masses.Comment: 11 pages, 9 figures. Accepted for publication in A&A (March 28, 2009
    • …
    corecore