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Abstract: In quantum machine learning, feature vectors are encoded into quantum states. Mea-
surements for the discrimination of states are useful tools for classification problems. Classification
algorithms inspired by quantum state discrimination have recently been implemented on classical
computers. We present a local approach combining Vonoroi-type tessellation of a training set with
pretty-good measurements for quantum state discrimination.
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1. Introduction

Quantum-inspired algorithms exploit some of the advantages of quantum computing
on classical hardware, providing new models of information storing and processing. In
this respect, quantum formalism, based on linear operators on Hilbert spaces, is used as a
rich mathematical machinery without the need for an underlying quantum system which
physically realizes the computations. In particular, quantum-inspired machine learning is a
field where this kind of algorithm is developed to accomplish machine learning tasks.

In the context of supervised learning, a general classification problem is defined as
the assignment of labels to new data instances given a training set of already labeled
data. For example, a label can be assigned to a new data instance on the basis of its
distance to the training data within a metric space where data are represented. In many
relevant cases, data instances are represented in a real vector space, called feature space,
equipped with the Euclidean distance. Classification with quantum computers is a widely
investigated topic (e.g., [1–3]), but the quantum-inspired paradigm can also be applied.
Some quantum-inspired classification algorithms based on a geometric approach have
recently been presented in [4] and compared with well-known classical methods.

This paper is devoted to the investigation of some quantum-inspired classification
algorithms, based on the notion of pretty-good measurement, within a local approach.
More precisely, we consider a Vonoroi-type tessellation of the dataset proposed in [5] to
classify an unlabeled instance without considering the entire dataset but, instead, only
a neighborhood of the test point. Therefore, the present proposal involves investigation
that goes beyond the quantum-inspired classifiers studied in [4]. Here, we integrate the
geometric approach to classification based on quantum discrimination with a local strategy
that has been successfully applied in [5], but which has also been suggested as a promising
path to improve classification in less recent proposals, such as [6]. However, the notion
of locality that we address is uniquely related to the selection of a neighborhood of the
test point into the feature space and has nothing to do with the notion of quantum non-
locality, violation of Bell inequalities, or local realism via hidden variable formulations of
quantum mechanics.
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An ensemble of classifiers is a set that improves the performance of an individual
classifier. These classifiers are trained with subsets of the original training set and inte-
grated to achieve more accurate classification. Methods for constructing ensemble learning
algorithms include boosting and bagging. The former learns sequentially: in each iteration
it assigns higher weight to the observations misclassified by its predecessor. In the latter,
different sample subsets are randomly drawn from the training dataset and each subset
is used to train a basic learning model in parallel. The global decision is obtained by
voting. Ensemble learning has been successfully used in diverse applications, such as
text classification, speech recognition, sentiment analysis, protein-folding recognition, and
streamflow forecasting [7].

In our approach, the ensemble is built using a clustering method that generates a
Voronoi diagram, which splits the space into regions defined by its representative. The rela-
tive quantum-inspired classifiers are structured on the encoding of the feature vectors into
density operators and on techniques for estimating the distinguishability of quantum states,
such as pretty-good measurement. The classification accuracy of these quantum-inspired
classifiers can be improved by increasing, in terms of tensor products, the number of
preparations of the quantum states that encode the feature vectors, at the cost of increasing
the computational space and time.

In Section 2, we recall the quantum encoding of data vectors into density operators and
the quantum-inspired classification based on the well-known quantum state discrimination
developed by Helstrom [8] and others [9]. Section 3 is focused on an encoding of feature
vectors into Bloch vectors that scale efficiently, increasing the dimension of the feature
space. In Section 4, we introduce the local algorithm as a procedure to restrict the training
set to the nearest points around each representative point of the tessellation, enabling the
local and parallel execution of the quantum-inspired classifiers. We present an application
of the Iris dataset for evaluating the impact of locality in quantum-inspired classification,
comparing the performances of the proposed algorithm to classical methods. In Section 5,
concluding remarks are presented and future developments towards innovative techniques
in machine learning are discussed.

2. Quantum-Inspired Classification

The first step of quantum-inspired classification is quantum encoding, that is, any
procedure to encode classical information into quantum states. In this paper, we consider
encodings of data vectors into density matrices on a Hilbert space H whose dimension
depends on the dimension of the input space. Density matrices are the mathematical objects
used to describe the physical states of quantum systems. A density matrix on H is a positive
semidefinite operator ρ such that trρ = 1. Pure states are all the density matrices of the form
ρ = |ψ〉〈ψ|, with ‖ ψ ‖= 1, which are the rank-1 projectors that can be directly identified
with unit vectors up to a phase factor. Let ρ be a density operator on a d-dimensional
Hilbert space Cd. ρ can be written in the following form:

ρ =
1
d

(
Id +

√
d(d− 1)

2

d2−1

∑
j=1

b(ρ)j σj

)
, (1)

where {σj}j=1,...,d2−1 are the standard generators of the special unitary group SU(d),
also called generalized Pauli matrices, and Id is the identity matrix of size d. The vector

b(ρ) = (b(ρ)1 , . . . , b(ρ)d2−1), with b(ρ)j =
√

d
2(d−1) tr(ρ σj) ∈ R, is the Bloch vector associated to

ρ which lies within the hypersphere of radius 1 in Rd2−1. For d = 2, the qubit case, the
density matrices are in bijective correspondence to the points of the unit ball in R3, where
the pure states are in one-to-one correspondence with the points of the surface of the
Bloch sphere. For d > 2, the points contained in the unit hypersphere of Rd2−1 are not in
bijective correspondence with density matrices on Cd, as in the case of a single qubit, so
the Bloch vectors do not form a ball but a complicated convex body. However, any vector
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within the closed ball of radius 2
d gives rise to a density operator [10]. One can apply the

Bloch representation of density matrices as an efficient quantum encoding as discussed in
Section 3.

Complex vectors of dimension n can be encoded into density matrices of a (n + 1)-
dimensional Hilbert space H in the following way:

Cn 3 x 7→ |x〉 = 1√
‖ x ‖2 +1

(
n−1

∑
α=0

xα|α〉+ |n〉
)
∈ H, (2)

where {|α〉}α=0,...,n is the computational basis of H, identified as the standard basis of Cn+1.
The map defined in (2), called amplitude encoding, encodes x into the pure state ρx = |x〉〈x|,
where the additional component of |x〉 stores the norm of x. Nevertheless, the quantum
encoding x 7→ ρx can be realized in terms of the Bloch vectors x 7→ b(ρx), saving space
resources. The improvement in memory occupation within the Bloch representation is evi-
dent when we take multiple tensor products ρ⊗ · · · ⊗ ρ of a density matrix ρ, constructing
a feature map to enlarge the dimension of the representation space [4].

Quantum-inspired classifiers are based on quantum encoding of data vectors into den-
sity matrices, calculations of centroids, and various criteria of quantum state distinguisha-
bility, such as the Helstrom state discrimination [11], the pretty-good measurement [12],
and the geometric construction of a minimum-error measurement [13].

Let us briefly recall the notion of quantum state discrimination. Given a set of arbi-
trary quantum states with respective a priori probabilities R = {(ρ1, p1), . . . , (ρN , pN)},
in general, there is no measurement process that discriminates the states without errors.
More formally, there does not exist a POVM, i.e., a collection E = {Ei}i=1,...,N of positive
semidefinite operators such that ∑N

i=1 Ei = I, satisfying the following property: tr(Eiρj) = 0
when i 6= j for all i, j = 1, . . . , N. The probability of a successful state discrimination of the
states in R performing the measurement E is:

PE(R) =
N

∑
i=1

pitr(Eiρi). (3)

An interesting and useful task is finding the optimal measurement that maximizes
the probability (3). Helstrom provided a complete characterization of the optimal mea-
surement Eopt for R = {(ρ1, p1), (ρ2, p2)} [8]. Eopt can be constructed as follows: Let
Λ : = p1ρ1 − p2ρ2 be the Helstrom observable, whose positive and negative eigenvalues are,
respectively, collected in the sets D+ and D−. Consider the two orthogonal projectors:

P± := ∑
λ∈D±

Pλ, (4)

where Pλ projects onto the eigenspace of λ. The measurement Eopt : = {P+, P−}maximizes
the probability (3) that attains the Helstrom bound hb(ρ1, ρ2) = p1tr(P+ρ1) + p2tr(P−ρ2).

Helstrom quantum state discrimination can be used to implement a quantum-inspired
binary classifier with promising performances [11]. Let {(x1, y1), . . . , (xM, yM)} be a train-
ing set with yi ∈ {1, 2} ∀i = 1, . . . , M. Once a quantum encoding Cn 3 x 7→ ρx ∈ S(H)
has been selected, one can construct the quantum centroids ρ1 and ρ2 of the two classes
C1,2 = {xi : yi = 1, 2}. Let {P+, P−} be the Helstrom measurement defined by the set

R = {(ρ1, p1), (ρ2, p2)}, where the probabilities attached to the centroids are p1,2 =
|C1,2|
|C1|+|C2|

.
The Helstrom classifier applies the optimal measurement for the discrimination of the two
quantum centroids to assign the label y to a new data instance x, encoded into the state ρx,
as follows:

y(x) =
{

1 if tr(P+ρx) ≥ tr(P−ρx)
2 otherwise

(5)
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A strategy to increase the accuracy in classification is given by the construction of
the tensor product of k copies of the quantum centroids ρ⊗k

1,2 , enlarging the Hilbert space
where data are encoded. The corresponding Helstrom measurement is {P⊗k

+ , P⊗k
− }, and the

Helstrom bound satisfies [11]:

hb(ρ
⊗k
1 , ρ⊗k

2 ) ≤ hb

(
ρ
⊗(k+1)
1 , ρ

⊗(k+1)
2

)
∀k ∈ N. (6)

By enlarging the Hilbert space of the quantum encoding, one increases the Helstrom
bound, obtaining a more accurate classifier. Since the Helstrom classifier is similar to a
support vector machine (SVM) with linear kernel [14], considering many copies of the
encoding quantum states gives rise to a kernel trick. The corresponding computational cost
is evident, but the space can be enlarged, saving time and space by means of the encoding
into Bloch vectors because fewer significant features are used.

A popular method for quantum state discrimination for distinguishing more than
two states is the square-root measurement, also known as pretty-good measurement,
defined by:

Ei = piρ
− 1

2 ρi ρ−
1
2 , (7)

where ρ = ∑i piρi. This method gives the optimal minimum-error when states satisfy
certain symmetry properties [12]. Clearly, to distinguish between n centroids, we need a
measurement with at most n outcomes. It is sometimes optimal to avoid measurement and
simply guess that the state is the a priori most likely state.

3. Bloch Representation

In quantum-inspired machine learning, the encoding of data instances into Bloch
vectors of density operators turns out to be a useful geometric tool to reduce memory
consumption in defining feature maps into higher dimensional spaces. Within the quantum
encoding (2), a real vector x ∈ Rd−1 is encoded in a projector operator ρx = |x〉〈x|, on
a d-dimensional Hilbert space where d ≥ 2. For simplicity, we consider an input vector
[x1, x2] ∈ R2 and the corresponding projector operator ρ[x1,x2]

on C3. By easy computations,
one can see that the Bloch vector of ρ[x1,x2]

has null components:

b(x1,x2) =
1

1 + x2
1 + x2

2

[
2x1x2, 2x1, 2x2, 0, 0, 0, x2

1 − x2
2,

x2
1 + x2

2 − 2√
3

]
. (8)

Instead of using a matrix with nine real elements to represent ρ[x1,x2]
, memory oc-

cupation can be improved by considering only the non-zero components of the Bloch
vector. In general, the technique of removing the components that are zero, or are repeated
several times, allows reducing of the space and the calculation time, considering only the
significant values that enable carrying out the classification. More precisely, the encoding
of a real data vector x into the amplitudes of a pure state ρx enables an encoding of data
into the corresponding Bloch vector x 7→ b(x). As observed in the example given by (8), the
Bloch vector can be reduced to a vector of lesser dimension reducing the zero components.
In higher dimension, a reduced Bloch representation can be obtained by also removing the
redundant components, as discussed below. In this sense, representing real vectors into
Bloch vectors, by means of the amplitude encoding, represents efficient quantum encoding.

In general, the definition of a quantum encoding is equivalent to selection of a feature
map for representing data vectors into a space of higher dimension. In this sense, data
representation into quantum states can be considered a way to perform kernel tricks. In the
case of the considered quantum encoding R2 3 [x1, x2] 7→ ρ[x1,x2]

∈ S(C3), in view of (8)
the non-linear explicit injective function ϕ : R2 → R5, to encode data into Bloch vectors
can be defined as follows:

ϕ([x1, x2]) :=
1

x2
1 + x2

2 + 1

[
2x1x2, 2x1, 2x2, x2

1 − x2
2,

x2
1 + x2

2 − 2√
3

]
. (9)
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From a geometric point of view, the mapped feature vectors are points on the surface
of a hyper-hemisphere. Within this representation, the centroids for the classification can
be calculated as:

x̄(ϕ)
i :=

1
|Ci| ∑

x∈Ci

ϕ(x) i = 1, 2. (10)

In general, such centroids are points inside the hypersphere that do not have an inverse
image in terms of a density operator; however, they can be rescaled to Bloch vectors within
the closed ball of radius 2

d+1 .
To improve the accuracy of the classification, one can increase the dimension of the

representation space providing k copies of the quantum states, in terms of a tensor product,
encoding data instances and centroids into “redundant” density matrices ρ⊗ · · · ⊗ ρ. Ac-
cording to the quantum formalism, multiple copies of the states are described in a tensor
product Hilbert space, whose dimension scales exponentially, with a strong impact in terms
of computational space (from dimension d− 1 to d2k) and time. However, following the
geometric approach, we can take advantage of the Bloch representation of real data to deal
with tensor products in an efficient way.

Let us consider the quantum encoding R2 3 [x1, x2] 7→ ρ[x1,x2]
∈ S(C3) introduced

above. Assuming that we need to represent the data vectors into a higher dimensional
space, then we define the new encoding R2 3 [x1, x2] 7→ ρ[x1,x2]

⊗ ρ[x1,x2]
∈ S(C9), taking

two copies of the density matrix ρ[x1,x2]
. Following the same argument applied to reduce

the Bloch vector (8), we can remove the zero entries and the multiple entries from the
Bloch vector of ρ[x1,x2]

⊗ ρ[x1,x2]
to store and process a density matrix as a real vector of

dimension 20 instead of a matrix of 81 elements (because there are 36 zero components and
24 duplicate values). Thus, the explicit function ϕ : R2 → R20 for two copies of the density
operators on C3 can be defined as follows:

ϕ([x1, x2]) :=
1

(x2
1 + x2

2 + 1)2

[
2x3

1x2, 2x3
1, 2x2

1x2
2, 2x2

1x2, 2x2
1, 2x1x3

2, 2x1x2
2, 2x1x2, 2x1, 2x3

2,

2x2
2, 2x2, x2

1(x1 − x2)(x1 + x2),
x2

1(x2
1 + x2

2 − 2)√
3

,
x2

1(x2
1 − 2x2

2 + 1)√
6

,

x4
1 − 4x4

2 + x2
1(2x2

2 + 1)√
10

,
x2

1 + x4
1 − 5x2

2 + 2x2
1x2

2 + x4
2√

15
,

x4
1 + x2

2 + x4
2 + x2

1(2x2
2 − 5)√

21
,

x4
1 − 6x2

2 + x4
2 + 2x2

1(x2
2 + 1)

2
√

7
,

1
6
(x2

1 + x2
2 − 2)(x2

1 + x2
2 + 4)

]
.

Similarly, we can store only 51 values instead of 729 for three copies (because there
are 351 zero components and 326 duplicate values), and so on. To clarify the application of
the efficient Bloch representation in the general case, let us stress that the positions of the
entries that can be removed are known a priori. However, one must also take into account
high-precision numbers and track the propagation of the numerical error.

The calculation of the centroids for the classification can be related to the quantum
encoding in different ways. Consider the amplitude encoding (2) of a d-dimensional real
feature vector x into the pure state ρx, the centroids of the classes C1, . . . , CM of training
points can be defined in the following alternative terms:

• Quantum centroid ρi := 1
|Ci | ∑x∈Ci

ρx;

• Quantum encoding ρxi of the classical centroid xi := 1
|Ci | ∑x∈Ci

x;

• Mean of the Bloch vectors b(i) := 1
|Ci | ∑x∈Ci

b(x) that is not a Bloch vector in general;

• Contracted centroid b̂
(i)

:= 2
d+1 b(i) that is a Bloch vector itself.

In general, we have that ρi 6= ρxi and b̂
(i)

is not the Bloch vector of ρi or ρxi . In the

following, we choose b̂
(i)

as the definition of centroid in order to select the encoding that is
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less memory consuming and to also represent the centroids as density matrices to perform
a meaningful quantum state discrimination.

4. Local Pretty-Good Classifiers

In this section, we introduce the local approach to quantum-inspired classification.
More precisely, we consider the execution of the classifiers based on quantum state discrim-
ination described in Section 2 after selection of the training points. In particular, the local
process in the feature space is based on the notion of Voronoi tessellation that we sketch in
the following way: Let (X, d) be a metric space and {Ei}i∈I be a collection of non-empty
subsets of X called generators. The Voronoi cell Vi is the set of points in X defined by:

Vi := {x ∈ X : d(x, Ei) ≤ d(x, Ej), for allj 6= i}, (11)

where d(x, Ei) := miny∈Ei d(x, y) and {Vi}i∈I is called Voronoi tessellation. The Vonoroi
vertices are the points that are equidistant to three or more generators. In our case, X is a
real vector space, d is the Euclidean distance and the generators are single points.

Following the approach proposed in [5], the training data is partitioned into voxels for
every class. For any non-empty voxel of a class, the mean of the contained data points is
calculated. The voxel means are the initial tessellation representatives of the classes and are
passed through an expectation-maximization process to evenly distribute the generator
points over the class instances. Thus, possible degenerate vertices are removed, and the
generator points move closer to the centroids of the Voronoi cells. The obtained tessellations
are merged into a single tessellation combining the generator points of every class. In
Algorithm 1, line 1 refers to this construction of the Voronoi tessellation over the training
set. For any generator point, there is the selection of the k nearest neighbors (kNNs) w.r.t.
the Euclidean distance (line 3) that are encoded into Bloch vectors using the representation
described in Section 3 (line 4). Then the contracted centroid of any class is constructed out
to form the considered k Bloch vectors (line 5). The corresponding n density operators can
be used to define the pretty-good measurement, according to (7), obtaining a quantum state
discrimination procedure for any cluster of the tessellation (line 6). Given an unlabeled
point x̂, there is calculation of the h nearest generator points in the input space (line 8) which
correspond to as many pretty-good measurements. The unlabeled point is encoded into
a pure state ρx̂, according to the amplitude encoding (2). Then, each of the h pretty-good
measurements is run to attach ρx̂ to the most likely class (line 11). Finally, the algorithm
returns the label given by the majority voting.

Algorithm 1: Local pretty-good classifier hNNPGM.
Input: Training set X, n classes Ci of training points, unlabeled point x̂
Result: Label y of x̂
find the generator points of the tessellation;
foreach xg generator point do

find the k nearest neighbors x1, . . . , xk to xg in X w.r.t. the Euclidean distance;
encode x1, . . . , xk into Bloch vectors b(x1), . . . , b(xk);

construct the contracted centroids b̂
(i)

= 2
(d+1)|Ci | ∑x∈Ci

b(x) and the corresponding

density operators ρi;
determine the pretty-good measurement relative to the contracted centroids ρi.

end
find the h nearest generator points x1, . . . , xh to x̂ in X w.r.t. the Euclidean distance;
encode x̂ into a pure state ρx;
foreach j = 1, . . . , h do

run the quantum-inspired classifier applying the pretty-good measurement to ρx and
assigning the class with the highest probability

end
return The label assignment is attributed on the basis of the majority
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The locality is imposed in a two-fold way by running the k-nearest neighbors on
the input space, finding the training vectors that are closest to any generator point of the
tessellation and by the h generator points nearest to the unlabeled point x̂. Then, there is the
quantum encoding into pure states and h quantum-inspired classifiers are parallel executed
over the restricted training sets. The considered method is a combination of a kNN (and a
hNN) algorithm to the quantum-inspired classifier based on the pretty-good measurement.
Since the parallel execution of the h pretty-good measurements selected on the basis of
the closest generator points to the test instance, let us denote this local quantum-inspired
classifier as hNNPGM.

The Iris dataset is a well-known multi-class classification dataset that we considered
for the experimental implementation of the hNNPGM classifier. The considered dataset is
characterized by five features and three classes where two classes are linearly separable (for
this reason the SVMs with non-linear kernel do not perform better than the SVM with linear
kernel, as reported in Table 1). The dataset was randomly divided into a training set and
a test set. The average accuracy is a useful index for comparison of our proposal to some
popular classical methods. We considered the SVM with different kernels: linear, radial
basis function, polynomial, and sigmoid. Then, we ran a random forest with 10 trees and
maximum depth 5, a naive Bayes classifier, and the nearest neighbor algorithm. hNNPGM
requires the choice of the hyperparameters k and h, as it is known from the standard kNN
algorithm that there is no general strategy to choose k a priori and hyperparameter tuning
must be performed. In Table 1, the results obtained for k = 10 and h = 3 for the average
accuracy of the tested classifiers are shown. The value of h is low to reduce the parallel
execution of the pretty-good classifiers, and the value of k is reasonable to construct the
centroids of the three classes of the Iris dataset for any generator point of the tessellation.
From the experiments, it was observed that the proposed local quantum-inspired classifier
performed well against the classical competitor, having the best average accuracy.

Table 1. Classification comparison, in terms of test average accuracy for 10 runs, for Iris dataset with
hNNPGM hyperparameters k = 10 and h = 3.

hNNPGM Linear Radial Basis Function Polynomial Sigmoid Random Forest Naive Bayes Nearest Neighbors

0.973± 0.009 0.903± 0.017 0.893± 0.017 0.903± 0.017 0.887± 0.018 0.913± 0.016 0.903± 0.017 0.927± 0.015

5. Conclusions

The present paper focuses on some methods of quantum-inspired machine learning,
in particular, classification algorithms based on quantum state discrimination. We adopted
a geometric formulation in defining quantum encodings of classical data in terms of Bloch
vectors of density operators, as in previous work [4], which is a crucial procedure to
save computational resources when defining feature maps into high dimensional spaces,
considering multiple copies of the encoding quantum states. A novel contribution of the
present paper is the local approach adopted to execute the classifier, not over the entire
training set, but in a neighborhood of the test point after separate voxelization of the data
classes, and the subsequent construction of a Vonoroi tessellation. Once partitioned, for
the training set, for any generator point of the tessellation, the k nearest data points are
encoded into Bloch vectors and used to define the quantum centroid of each class as a
contracted Bloch vector. Then a pretty-good measurement is constructed from the obtained
centroids for any generator point. Finally, a selection is made of the h nearest generator
points to the test data instance to classify them by h pretty-good classifiers in parallel. The
final label is chosen by majority voting. The local quantum-inspired classifier considered,
hNNPGM, for reasonable values of the hyperparameters, was implemented and was found
to be a method with performance comparable to well-known classical algorithms for multi-
class classification. We performed some experiments using the Iris dataset and found that
hNNPGM was even more accurate than an SVM with different kernels, a random forest, a
naive Bayes classifier and the NN classification algorithm. We do not consider the obtained
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results to be disruptive but, more cautiously, as evidence that local quantum-inspired
classifiers can be considered to be an interesting kind of classification algorithm that can be
investigated from the point of view of foundations and applications.

The present proposal, based on a local approach to quantum-inspired classification,
offers a family of classifiers, rather than a single classification algorithm. In fact, several
strategies to impose a notion of locality over a training set, and several procedures of
quantum state discrimination, can be applied. Both the local approach to classification
and the quantum-inspired data encoding/processing deserve careful scientific investiga-
tion to clarify the impact of these ideas on machine learning. In a future paper, we will
present some numerical results obtained from the implementation of these local quantum-
inspired classifiers.
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