27 research outputs found

    Critical points in logistic growth curves and treatment comparisons

    Get PDF
    Several biological phenomena have a behavior over time mathematically characterized by a strong increasing function in the early stages of development, then by a less pronounced growth, sometimes showing stability. The separation between these phases is very important to the researcher, since the maintenance of a less productive phase results in uneconomical activity. In this report we present methods of determining critical points in logistic functions that separate the early stages of growth from the asymptotic phase, with the aim of establishing a stopping critical point in the growth and on this basis determine differences in treatments. The logistic growth model is fitted to experimental data of imbibition of araribá seeds (Centrolobium tomentosum). To determine stopping critical points the following methods were used: i) accelerating growth function, ii) tangent at the inflection point, iii) segmented regression; iv) modified segmented regression; v) non-significant difference; and vi) non-significant difference by simulation. The analysis of variance of the abscissas and ordinates of the breakpoints was performed with the objective of comparing treatments and methods used to determine the critical points. The methods of segmented regression and of the tangent at the inflection point lead to early stopping points, in comparison with other methods, with proportions ordinate/asymptote lower than 0.90. The non-significant difference method by simulation had higher values of abscissas for stopping point, with an average proportion ordinate/asymptote equal to 0.986. An intermediate proportion of 0.908 was observed for the acceleration function method

    Inflection and stability points of diphasic logistic analysis of growth

    Get PDF
    Growth functions with inflection points following a diphasic model, can be adjusted by two approaches using segmented regression or the sum of two functions. In both cases, there are two functions, one for each phase, with inflection and stability points. However, when they are summed, the result is a new function and the points of inflection and stability are different from those obtained from using each function individually. A method to determine these points in a diphasic logistics sum of functions is suggested and the results obtained from fitting the models to eucalyptus growth data showed a better fit of the logistic diphasic sum as compared with segmented regression and monophasic logistic models

    Determinação da matéria-prima utilizada na produção do biodiesel adicionado ao diesel mineral através de monitoramento seletivo de íons

    Full text link
    The selective ion monitoring acquisition mode in mass spectrometry was applied to identify, in the diesel complex matrix, the raw materials (vegetable oil and alcohol) that originate biodiesel. Biodiesel samples obtained from babassu, castor, palm and soybean vegetable oils and pure fatty acid methyl and ethyl esters were used to develop this method, using specific fragments in mass spectrometry and the "window system" in gas chromatography. The commercial Brazilian B2 samples were found to be produced with soybean oil, transesterified with methanol

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    O perfil semiológico do paciente portador de hemorragia digestiva alta

    Get PDF
    OBJETIVO: O seguinte estudo objetivou descrever a semiologia do paciente portador de hemorragia digestiva alta, considerando como determinante na avaliação de potencias focos hemorrágicos. METODOLOGIA: Foram realizadas buscas nas plataformas do SciELO, LILACS, PubMed, Scopus e Google Scholar,utilizando os descritores gastrointestinal bleeding, peptic ulcerous disease e varicose hemorrhage, sendo identificados 35 estudos, dos quais foram incluídos 13 artigos completos. Desses estudos, 5 avaliaram as principais etiologias, 2 o surgimento de novos testes diagnósticos, 2 analisaram os aspectos epidemiológicos e 1 a sintomatologia apresentada pelo acometimento da hemorragia digestiva alta. Observou-se inicialmente a abundâncias de informações conceituais sobre o sangramento, como um transtorno clínico comum, acompanhada de inúmeras manifestações, considerando que o foco hemorrágico pode ocorrer em qualquer porção do trato gastrointestinal. Neste estudo, todas as publicações eleitas apresentaram o quadro semiológico composto por algia abdominal, indícios de choque hipovolêmico e taquicardia, alguns exibiram quedas abruptas da pressão arterial, odinofagia, êmese, náuseas e estado ictérico. Os pacientes implicados, cronicamente, já manifestaram ocorrências prévias, devido ao caráter recidivante torna-se essencial investigar a existência de varizes, fístula aorto-entérica, angiodisplasia e doença ulcerosa. CONCLUSÃO: Elucida-se que a hemorragia digestiva alta representa a principal causa de sangramento do trato gastrointestinal, majoritamente manifesta-se como hematêmese ou melena e cursam com o quadro sintomatológico que auxilia na avaliação da gravidade deste e o embasamento de potenciais focos de sangramento e que contribuam para disseminação de informações e intervenções futuras

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore