2,034 research outputs found

    The EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways

    Get PDF
    Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153–160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits β1-integrin activity in neuronal cells. Supporting a functional role for β1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing β1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment

    The EphB4 receptor promotes the growth of melanoma cells expressing the ephrin-B2 ligand

    Get PDF
    Cutaneous melanoma is the most aggressive form of skin cancer and several families of receptor tyrosine kinases have been implicated in its development and progression, including the Eph receptor family (Hess et al., 2007; Smalley et al., 2009). Among Eph receptors, EphA2 has been most extensively studied in melanoma and linked to increased malignancy (Hess et al., 2007; Margaryan et al., 2009).Fil: Yang, Nai Ying . University of California; Estados UnidosFil: Lopez Bergami, Pablo Roberto. Sanford-burnham Medical Research Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Goydos, James S.. Robert Wood Johnson Medical School; Estados UnidosFil: Yip, Dana . Robert Wood Johnson Medical School; Estados UnidosFil: Walker, Ameae . University of California; Estados UnidosFil: Pasquale, Elena B.. Sanford-burnham Medical Research Institute; Estados UnidosFil: Ethell, Iryna. University of California; Estados Unido

    TeV Particle Astrophysics II: Summary comments

    Get PDF
    A unifying theme of this conference was the use of different approaches to understand astrophysical sources of energetic particles in the TeV range and above. In this summary I review how gamma-ray astronomy, neutrino astronomy and (to some extent) gravitational wave astronomy provide complementary avenues to understanding the origin and role of high-energy particles in energetic astrophysical sources.Comment: 6 pages, 4 figures; Conference summary talk for "TeV Particle Astrophysics II" at University of Wisconsin, Madison, 28-31 August 200

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    VADER: Probing the Dark Side of Dimorphos with LICIACube LUKE

    Get PDF
    The ASI cubesat LICIACube has been part of the first planetary defense mission DART, having among its scopes to complement the DRACO images to better constrain the Dimorphos shape. LICIACube had two different cameras, LEIA and LUKE, and to accomplish its goal, it exploited the unique possibility of acquiring images of the Dimorphos hemisphere not seen by DART from a vantage point of view, in both time and space. This work is indeed aimed at constraining the tridimensional shape of Dimorphos, starting from both LUKE images of the nonimpacted hemisphere of Dimorphos and the results obtained by DART looking at the impacted hemisphere. To this aim, we developed a semiautomatic Computer Vision algorithm, named VADER, able to identify objects of interest on the basis of physical characteristics, subsequently used as input to retrieve the shape of the ellipse projected in the LUKE images analyzed. Thanks to this shape, we then extracted information about the Dimorphos ellipsoid by applying a series of quantitative geometric considerations. Although the solution space coming from this analysis includes the triaxial ellipsoid found by using DART images, we cannot discard the possibility that Dimorphos has a more elongated shape, more similar to what is expected from previous theories and observations. The result of our work seems therefore to emphasize the unique value of the LICIACube mission and its images, making even clearer the need of having different points of view to accurately define the shape of an asteroid.This work was supported by the Italian Space Agency (ASI) within the LICIACube project (ASI-INAF agreement AC No. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004
    corecore