27 research outputs found

    Response of soil bacterial communities to the incorporation of crop residues : influence of agricultural practices and link with the soil biological process

    No full text
    A l’échelle de l’agro-Ă©cosystĂšme, la productivitĂ© primaire est sous la dĂ©pendance du recyclage des matiĂšres organiques du sol (MOS) par l’action des organismes indigĂšnes dĂ©composeurs, qui minĂ©ralisent les composĂ©s organiques libĂ©rant ainsi les nutriments nĂ©cessaires Ă  la croissance vĂ©gĂ©tale. A une Ă©chelle plus globale, le recyclage des MOS dĂ©termine les flux de carbone entre le sol et l’atmosphĂšre, avec des consĂ©quences majeures sur la qualitĂ© de l’environnement et les changements globaux. MalgrĂ© le rĂŽle central des microorganismes indigĂšnes dans ces processus, la composante microbienne est encore mal connue et souvent considĂ©rĂ©e comme une boĂźte noire en termes de diversitĂ© et de fonctionnalitĂ©. Par consĂ©quent, pour mieux comprendre et prĂ©dire l’évolution des MOS et donc les flux de carbone (C) dans les agro-Ă©cosystĂšmes, il est nĂ©cessaire de mieux connaitre les populations et les mĂ©canismes microbiens impliquĂ©s dans leur dĂ©gradation et transformation. Dans ce contexte, l’objectif de cette thĂšse Ă©tait de progresser dans la connaissance de la rĂ©ponse des communautĂ©s microbiennes telluriques Ă  l’apport de rĂ©sidus de culture. Cette rĂ©ponse des communautĂ©s microbiennes a Ă©tĂ© abordĂ©e en termes de (i) succession des populations impliquĂ©es dans les processus de dĂ©gradation de ces MOF (matiĂšres organiques fraĂźches), (ii) lien avec leur fonction de dĂ©gradation et rĂ©percussion sur la dynamique des matiĂšres organiques, et (iii) rĂŽle dans les processus de stockage/dĂ©stockage du carbone via les processus de « priming effect ». DiffĂ©rents paramĂštres pouvant moduler la dĂ©gradation des rĂ©sidus et la dynamique des communautĂ©s ont Ă©tĂ© pris en compte : modalitĂ© d’apport des rĂ©sidus (pratiques culturales), qualitĂ© biochimique des rĂ©sidus (diffĂ©rentes espĂšces vĂ©gĂ©tales), et tempĂ©rature. La stratĂ©gie globale de recherche dĂ©veloppĂ©e repose sur des expĂ©rimentations de terrain et au laboratoire impliquant diffĂ©rentes Ă©chelles spatiales (du microcosme de sol Ă  la parcelle agronomique) et temporelles (du temps de gĂ©nĂ©ration microbien aux cycles culturaux). La rĂ©ponse des communautĂ©s microbiennes Ă  l’apport de rĂ©sidus a Ă©tĂ© Ă©valuĂ©e par l’utilisation de mĂ©thodes molĂ©culaires permettant de caractĂ©riser sans a priori la diversitĂ© des microorganismes du sol (empreintes molĂ©culaires, clonage/sĂ©quençage, sĂ©quençage haut dĂ©bit). En parallĂšle, un suivi quantitatif et qualitatif de la matiĂšre organique du sol, par des mĂ©thodes de biochimie ou de spectroscopie, a Ă©tĂ© rĂ©alisĂ© afin d’établir le lien entre la dynamique des communautĂ©s microbiennes et le devenir de la matiĂšre organique dans le sol. Les deux premiers chapitres du manuscrit portent sur des expĂ©rimentations rĂ©alisĂ©es au terrain (conditions naturelles) afin d’évaluer l’influence de la localisation des rĂ©sidus (rĂ©sidus de blĂ© incorporĂ©s vs. laissĂ©s en surface ; site expĂ©rimentale INRA Mons) d’une part et d’autre part de la qualitĂ© biochimique des rĂ©sidus (rĂ©sidus de blĂ©, colza et luzerne incorporĂ©s, site expĂ©rimentale INRA Epoisses) sur la dynamique des communautĂ©s microbiennes du sol. Les rĂ©sultats obtenus mettent en Ă©vidence une forte influence de la localisation comme de la qualitĂ© biochimique des rĂ©sidus sur les successions de populations microbiennes induites suite Ă  l’apport. Des populations/groupes microbiens stimulĂ©s spĂ©cifiquement dans chaque modalitĂ© ont Ă©tĂ© identifiĂ©s. Les rĂ©sultats de diversitĂ© ont Ă©tĂ© mis en regard des dynamiques de dĂ©composition des rĂ©sidus, afin de faire le lien entre les successions de populations et l’évolution des ressources trophiques. La troisiĂšme partie du travail correspond Ă  une expĂ©rimentation en conditions contrĂŽlĂ©es (microcosmes de sol) nous permettant de coupler des outils molĂ©culaires et isotopiques (ADN-SIP) pour cibler spĂ©cifiquement les populations microbiennes activement impliquĂ©es dans la dĂ©gradation des rĂ©sidus de culture - etcThe effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA) of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the -subgroup of proteobacteria were stimulated when residues were incorporated whereas the -subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues. Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in a eleven-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass and genetic structure of the soil microbial communities. Wheat, alfalfa and rape residues were incorporated into the 0-15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near infrared spectroscopy (NIRS). Qualitative modifications in the genetic structure of the bacterial communities were determined by Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA). Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial communities dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic populations/bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process..

    Réponse des communautés microbiennes du sol à l'apport de résidus de culture : influence des pratiques agricoles et lien avec le fonctionnement biologique du sol

    No full text
    The effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA) of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the -subgroup of proteobacteria were stimulated when residues were incorporated whereas the -subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues. Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in a eleven-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass and genetic structure of the soil microbial communities. Wheat, alfalfa and rape residues were incorporated into the 0-15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near infrared spectroscopy (NIRS). Qualitative modifications in the genetic structure of the bacterial communities were determined by Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA). Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial communities dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic populations/bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process...A l’échelle de l’agro-Ă©cosystĂšme, la productivitĂ© primaire est sous la dĂ©pendance du recyclage des matiĂšres organiques du sol (MOS) par l’action des organismes indigĂšnes dĂ©composeurs, qui minĂ©ralisent les composĂ©s organiques libĂ©rant ainsi les nutriments nĂ©cessaires Ă  la croissance vĂ©gĂ©tale. A une Ă©chelle plus globale, le recyclage des MOS dĂ©termine les flux de carbone entre le sol et l’atmosphĂšre, avec des consĂ©quences majeures sur la qualitĂ© de l’environnement et les changements globaux. MalgrĂ© le rĂŽle central des microorganismes indigĂšnes dans ces processus, la composante microbienne est encore mal connue et souvent considĂ©rĂ©e comme une boĂźte noire en termes de diversitĂ© et de fonctionnalitĂ©. Par consĂ©quent, pour mieux comprendre et prĂ©dire l’évolution des MOS et donc les flux de carbone (C) dans les agro-Ă©cosystĂšmes, il est nĂ©cessaire de mieux connaitre les populations et les mĂ©canismes microbiens impliquĂ©s dans leur dĂ©gradation et transformation. Dans ce contexte, l’objectif de cette thĂšse Ă©tait de progresser dans la connaissance de la rĂ©ponse des communautĂ©s microbiennes telluriques Ă  l’apport de rĂ©sidus de culture. Cette rĂ©ponse des communautĂ©s microbiennes a Ă©tĂ© abordĂ©e en termes de (i) succession des populations impliquĂ©es dans les processus de dĂ©gradation de ces MOF (matiĂšres organiques fraĂźches), (ii) lien avec leur fonction de dĂ©gradation et rĂ©percussion sur la dynamique des matiĂšres organiques, et (iii) rĂŽle dans les processus de stockage/dĂ©stockage du carbone via les processus de « priming effect ». DiffĂ©rents paramĂštres pouvant moduler la dĂ©gradation des rĂ©sidus et la dynamique des communautĂ©s ont Ă©tĂ© pris en compte : modalitĂ© d’apport des rĂ©sidus (pratiques culturales), qualitĂ© biochimique des rĂ©sidus (diffĂ©rentes espĂšces vĂ©gĂ©tales), et tempĂ©rature. La stratĂ©gie globale de recherche dĂ©veloppĂ©e repose sur des expĂ©rimentations de terrain et au laboratoire impliquant diffĂ©rentes Ă©chelles spatiales (du microcosme de sol Ă  la parcelle agronomique) et temporelles (du temps de gĂ©nĂ©ration microbien aux cycles culturaux). La rĂ©ponse des communautĂ©s microbiennes Ă  l’apport de rĂ©sidus a Ă©tĂ© Ă©valuĂ©e par l’utilisation de mĂ©thodes molĂ©culaires permettant de caractĂ©riser sans a priori la diversitĂ© des microorganismes du sol (empreintes molĂ©culaires, clonage/sĂ©quençage, sĂ©quençage haut dĂ©bit). En parallĂšle, un suivi quantitatif et qualitatif de la matiĂšre organique du sol, par des mĂ©thodes de biochimie ou de spectroscopie, a Ă©tĂ© rĂ©alisĂ© afin d’établir le lien entre la dynamique des communautĂ©s microbiennes et le devenir de la matiĂšre organique dans le sol. Les deux premiers chapitres du manuscrit portent sur des expĂ©rimentations rĂ©alisĂ©es au terrain (conditions naturelles) afin d’évaluer l’influence de la localisation des rĂ©sidus (rĂ©sidus de blĂ© incorporĂ©s vs. laissĂ©s en surface ; site expĂ©rimentale INRA Mons) d’une part et d’autre part de la qualitĂ© biochimique des rĂ©sidus (rĂ©sidus de blĂ©, colza et luzerne incorporĂ©s, site expĂ©rimentale INRA Epoisses) sur la dynamique des communautĂ©s microbiennes du sol. Les rĂ©sultats obtenus mettent en Ă©vidence une forte influence de la localisation comme de la qualitĂ© biochimique des rĂ©sidus sur les successions de populations microbiennes induites suite Ă  l’apport. Des populations/groupes microbiens stimulĂ©s spĂ©cifiquement dans chaque modalitĂ© ont Ă©tĂ© identifiĂ©s. Les rĂ©sultats de diversitĂ© ont Ă©tĂ© mis en regard des dynamiques de dĂ©composition des rĂ©sidus, afin de faire le lien entre les successions de populations et l’évolution des ressources trophiques. La troisiĂšme partie du travail correspond Ă  une expĂ©rimentation en conditions contrĂŽlĂ©es (microcosmes de sol) nous permettant de coupler des outils molĂ©culaires et isotopiques (ADN-SIP) pour cibler spĂ©cifiquement les populations microbiennes activement impliquĂ©es dans la dĂ©gradation des rĂ©sidus de culture - et

    Réponse des communautés microbiennes du sol à l'apport de résidus de culture (influence des pratiques agricoles et lien avec le fonctionnement biologique du sol)

    No full text
    A l échelle de l agro-écosystÚme, la productivité primaire est sous la dépendance du recyclage des matiÚres organiques du sol (MOS) par l action des organismes indigÚnes décomposeurs, qui minéralisent les composés organiques libérant ainsi les nutriments nécessaires à la croissance végétale. A une échelle plus globale, le recyclage des MOS détermine les flux de carbone entre le sol et l atmosphÚre, avec des conséquences majeures sur la qualité de l environnement et les changements globaux. Malgré le rÎle central des microorganismes indigÚnes dans ces processus, la composante microbienne est encore mal connue et souvent considérée comme une boßte noire en termes de diversité et de fonctionnalité. Par conséquent, pour mieux comprendre et prédire l évolution des MOS et donc les flux de carbone (C) dans les agro-écosystÚmes, il est nécessaire de mieux connaitre les populations et les mécanismes microbiens impliqués dans leur dégradation et transformation. Dans ce contexte, l objectif de cette thÚse était de progresser dans la connaissance de la réponse des communautés microbiennes telluriques à l apport de résidus de culture. Cette réponse des communautés microbiennes a été abordée en termes de (i) succession des populations impliquées dans les processus de dégradation de ces MOF (matiÚres organiques fraßches), (ii) lien avec leur fonction de dégradation et répercussion sur la dynamique des matiÚres organiques, et (iii) rÎle dans les processus de stockage/déstockage du carbone via les processus de priming effect . Différents paramÚtres pouvant moduler la dégradation des résidus et la dynamique des communautés ont été pris en compte : modalité d apport des résidus (pratiques culturales), qualité biochimique des résidus (différentes espÚces végétales), et température. La stratégie globale de recherche développée repose sur des expérimentations de terrain et au laboratoire impliquant différentes échelles spatiales (du microcosme de sol à la parcelle agronomique) et temporelles (du temps de génération microbien aux cycles culturaux). La réponse des communautés microbiennes à l apport de résidus a été évaluée par l utilisation de méthodes moléculaires permettant de caractériser sans a priori la diversité des microorganismes du sol (empreintes moléculaires, clonage/séquençage, séquençage haut débit). En parallÚle, un suivi quantitatif et qualitatif de la matiÚre organique du sol, par des méthodes de biochimie ou de spectroscopie, a été réalisé afin d établir le lien entre la dynamique des communautés microbiennes et le devenir de la matiÚre organique dans le sol. Les deux premiers chapitres du manuscrit portent sur des expérimentations réalisées au terrain (conditions naturelles) afin d évaluer l influence de la localisation des résidus (résidus de blé incorporés vs. laissés en surface ; site expérimentale INRA Mons) d une part et d autre part de la qualité biochimique des résidus (résidus de blé, colza et luzerne incorporés, site expérimentale INRA Epoisses) sur la dynamique des communautés microbiennes du sol. Les résultats obtenus mettent en évidence une forte influence de la localisation comme de la qualité biochimique des résidus sur les successions de populations microbiennes induites suite à l apport. Des populations/groupes microbiens stimulés spécifiquement dans chaque modalité ont été identifiés. Les résultats de diversité ont été mis en regard des dynamiques de décomposition des résidus, afin de faire le lien entre les successions de populations et l évolution des ressources trophiques. La troisiÚme partie du travail correspond à une expérimentation en conditions contrÎlées (microcosmes de sol) nous permettant de coupler des outils moléculaires et isotopiques (ADN-SIP) pour cibler spécifiquement les populations microbiennes activement impliquées dans la dégradation des résidus de culture - etcThe effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA) of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the -subgroup of proteobacteria were stimulated when residues were incorporated whereas the -subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues. Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in a eleven-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass and genetic structure of the soil microbial communities. Wheat, alfalfa and rape residues were incorporated into the 0-15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near infrared spectroscopy (NIRS). Qualitative modifications in the genetic structure of the bacterial communities were determined by Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA). Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial communities dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic populations/bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process...DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Structural Diversity of Bacterial Communities Associated with Bloom-Forming Freshwater Cyanobacteria Differs According to the Cyanobacterial Genus

    Get PDF
    International audienceThe factors and processes driving cyanobacterial blooms in eutrophic freshwater ecosystems have been extensively studied in the past decade. A growing number of these studies concern the direct or indirect interactions between cyanobacteria and heterotrophic bacteria. The presence of bacteria that are directly attached or immediately adjacent to cyano-bacterial cells suggests that intense nutrient exchanges occur between these microorganisms. In order to determine if there is a specific association between cyanobac-teria and bacteria, we compared the bacterial community composition during two cyanobac-teria blooms of Anabaena (filamentous and N 2-fixing) and Microcystis (colonial and non-N 2 fixing) that occurred successively within the same lake. Using high-throughput sequencing, we revealed a clear distinction between associated and free-living communities and between cyanobacterial genera. The interactions between cyanobacteria and bacteria appeared to be based on dissolved organic matter degradation and on N recycling, both for N 2-fixing and non N 2-fixing cyanobacteria. Thus, the genus and potentially the species of cyanobacteria and its metabolic capacities appeared to select for the bacterial community in the phycosphere

    In Situ Dynamics and Spatial Heterogeneity of Soil Bacterial Communities Under Different Crop Residue Management

    No full text
    International audienceThe effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-automated ribosomal intergenic spacer analysis of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the γ-subgroup of proteobacteria were stimulated when residues were incorporated whereas the α-subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues

    Insights into the cyanosphere: capturing the respective metabolisms of cyanobacteria and chemotrophic bacteria in natural conditions?

    No full text
    International audienceSpecific interactions have been highlighted betweencyanobacteria and chemotrophic bacteria within thecyanosphere, suggesting that nutrients recycling couldbe optimized by cyanobacteria/bacteria exchanges. Inorder to determine the respective metabolic roles ofthe cyanobacterial and bacterial consortia (micro-biome), a day–night metatranscriptomic analysis wasperformed onDolichospermumsp. (N2-fixer) andMicro-cystissp. (non N2-fixer) natural blooms occurringsuccessively within a Frenchperi-urban lake. The taxo-nomical and functional analysis of the metatran-scriptoms have highlighted specific association ofbacteria within the cyanosphere, driven by the cyano-bacteria identity, without strongly modifying the func-tional composition of the microbiomes, suggestingfunctional redundancy within the cyanosphere. More-over, the functional composition of these active com-munities was driven by the living mode. During the twosuccessive bloom events, it appeared that NH4+(newlyfixed and/or allochthonous) was preferentially trans-formed into amino acids for the both the microbiomeand the cyanobacteria, while phosphate metabolismwas enhanced, suggesting that due to a high cellulargrowth, P limitation might take place within the cyano-sphere consortium
    corecore