7 research outputs found

    Neuropathological hallmarks of fetal hydrocephalus linked to CCDC88C pathogenic variants

    No full text
    Abstract The prevalence of congenital hydrocephalus has been estimated at 1.1 per 1000 infants when including cases diagnosed before 1 year of age after exclusion of neural tube defects. Classification criteria are based either on CSF dynamics, pathophysiological mechanisms or associated lesions. Whereas inherited syndromic hydrocephalus has been associated with more than 100 disease-causing genes, only four genes are currently known to be linked to congenital hydrocephalus either isolated or as a major clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. In the past 10 years, pathogenic variants in CCDC88C have been documented but the neuropathology remains virtually unknown. We report the neuropathology of two foetuses from one family harbouring two novel compound heterozygous pathogenic variants in the CCDC88C gene: a maternally inherited indel in exon 22, c.3807_3809delinsACCT;p.(Gly1270Profs*53) and a paternally inherited deletion of exon 23, c.3967-?_c.4112-?;p.(Leu1323Argfs*10). Medical termination of pregnancy was performed at 18 and 23 weeks of gestation for severe bilateral ventriculomegaly. In both fetuses, brain lesions consisted of multifocal atresia-forking along the aqueduct of Sylvius and the central canal of the medulla, periventricular neuronal heterotopias and choroid plexus hydrops. The second fetus also presented lumbar myelomeningocele, left diaphragmatic hernia and bilateral renal agenesis. CCDC88C encodes the protein DAPLE which contributes to ependymal cell planar polarity by inhibiting the non-canonical Wnt signaling pathway and interacts with MPDZ and PARD3. Interestingly, heterozygous variants in PARD3 result in neural tube defects by defective tight junction formation and polarization process of the neuroepithelium. Besides, during organ formation Wnt signalling is a prerequisite for planar cell polarity pathway activation, and mutations in planar cell polarity genes lead to heart, lung and kidney malformations. Hence, candidate variants in CCDC88C should be carefully considered whether brain lesions are isolated or associated with malformations suspected to result from disorders of planar cell polarity

    A Simple, Universal, and Cost-Efficient Digital PCR Method for the Targeted Analysis of Copy Number Variations

    No full text
    International audienceBACKGROUND: Rare copy number variations (CNVs) are a major cause of genetic diseases. Simple targeted methods are required for their confirmation and segregation analysis. We developed a simple and universal CNV assay based on digital PCR (dPCR) and universal locked nucleic acid (LNA) hydrolysis probes.METHODS: We analyzed the mapping of the 90 LNA hydrolysis probes from the Roche Universal ProbeLibrary (UPL). For each CNV, selection of the optimal primers and LNA probe was almost automated; probes were reused across assays and each dPCR assay included the CNV amplicon and a reference amplicon. We assessed the assay performance on 93 small and large CNVs and performed a comparative cost-efficiency analysis.RESULTS: UPL-LNA probes presented nearly 20000000 occurrences on the human genome and were homogeneously distributed with a mean interval of 156 bp. The assay accurately detected all the 93 CNVs, except one (<200 bp), with coefficient of variation <10%. The assay was more cost-efficient than all the other methods.CONCLUSIONS: The universal dPCR CNV assay is simple, robust, and cost-efficient because it combines a straightforward design allowed by universal probes and end point PCR, the advantages of a relative quantification of the target to the reference within the same reaction, and the high flexibility of the LNA hydrolysis probes. This method should be a useful tool for genomic medicine, which requires simple methods for the interpretation and segregation analysis of genomic variations

    Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and practical use

    No full text
    International audienceAutism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component whose knowledge evolves quickly. Next-generation sequencing is the only effective technology to deal with the high genetic heterogeneity of ASD in a clinical setting. However, rigorous criteria to classify rare genetic variants conferring ASD susceptibility are currently lacking. We have performed whole-exome sequencing to identify both nucleotide variants and copy number variants (CNVs) in 253 ASD patients, including 68 patients with intellectual disability (ID) and 90 diagnosed as Asperger syndrome. Using explicit criteria to classify both susceptibility genes and susceptibility variants we prioritized 217 genes belonging to the following categories: syndromic genes, genes with an excess of de novo protein truncating variants and genes targeted by rare CNVs. We obtained a susceptibility variant detection rate of 19.7% (95% CI: [15–25.2%]). The rate for CNVs was 7.1% (95% CI: [4.3–11%]) and 12.6% (95% CI: [8.8–17.4%]) for nucleotide variants. The highest rate (30.1%, 95% CI: [20.2–43.2%]) was obtained in the ASD + ID subgroup. A strong contributor for at risk nucleotide variants was the recently identified set of genes (n = 81) harboring an excess of de novo protein truncating variants. Since there is currently no evidence that the genes targeted here are necessary and sufficient to cause ASD, we recommend to avoid the term “causative of ASD” when delivering the information about a variant to a family and to use instead the term “genetic susceptibility factor contributing to ASD”

    Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation

    Get PDF
    International audienceThe detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow

    A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability.

    Get PDF
    Présent adresses: Sophie Calderari, UMR INRA 1198, Jouy en Josas Identifiant Hal: pasteur-01342825, version 1International audienceSemaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We then used Sanger sequencing to search for deleterious variants affecting SEMA5A in 142 patients with ASD. We also identified two independent heterozygous variants located in a conserved functional domain of the protein. Both variants were maternally inherited and predicted as deleterious. Our genetic screens identified the first case of a de novo SEMA5A microdeletion in a patient with ASD and ID. Although our study alone cannot formally associate SEMA5A with susceptibility to ASD, it provides additional evidence that Semaphorin dysfunction could lead to ASD and ID. Further studies on Semaphorins are warranted to better understand the role of this family of genes in susceptibility to neurodevelopmental disorders

    Mapping the differences in care for 5,000 Spinal Muscular Atrophy patients, a survey of 24 national registries in North America, Australasia and Europe

    No full text
    Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder characterised by the degeneration of motor neurons and progressive muscle weakness. It is caused by homozygous deletions in the survival motor neuron gene on chromosome 5. SMA shows a wide range of clinical severity, with SMA type I patients often dying before 2\ua0years of age, whereas type III patients experience less severe clinical manifestations and can have a normal life span. Here, we describe the design, setup and utilisation of the TREAT-NMD national SMA patient registries characterised by a small, but fully standardised set of registry items and by genetic confirmation in all patients. We analyse a selection of clinical items from the SMA registries in order to provide a snapshot of the clinical data stratified by SMA subtype, and compare these results with published recommendations on standards of care. Our study included 5,068 SMA patients in 25 countries. A total of 615 patients were ventilated, either invasively (178) or non-invasively (437), 439 received tube feeding and 455 had had scoliosis surgery. Some of these interventions were not available to patients in all countries, but differences were also noted among high-income countries with comparable wealth and health care systems. This study provides the basis for further research, such as quality of life in ventilated SMA patients, and will inform clinical trial planning
    corecore