53 research outputs found
The Role of Pitch and Timbre in Voice Gender Categorization
Voice gender perception can be thought of as a mixture of low-level perceptual feature extraction and higher-level cognitive processes. Although it seems apparent that voice gender perception would rely on low-level pitch analysis, many lines of research suggest that this is not the case. Indeed, voice gender perception has been shown to rely on timbre perception and to be categorical, i.e., to depend on accessing a gender model or representation. Here, we used a unique combination of acoustic stimulus manipulation and mathematical modeling of human categorization performances to determine the relative contribution of pitch and timbre to this process. Contrary to the idea that voice gender perception relies on timber only, we demonstrate that voice gender categorization can be performed using pitch only but more importantly that pitch is used only when timber information is ambiguous (i.e., for more androgynous voices)
Hemispheric association and dissociation of voice and speech information processing in stroke
As we listen to someone speaking, we extract both linguistic and non-linguistic information. Knowing how these two sets of information are processed in the brain is fundamental for the general understanding of social communication, speech recognition and therapy of language impairments. We investigated the pattern of performances in phoneme versus gender categorization in left and right hemisphere stroke patients, and found an anatomo-functional dissociation in the right frontal cortex, establishing a new syndrome in voice discrimination abilities. In addition, phoneme and gender performances were most often associated than dissociated in the left hemisphere patients, suggesting a common neural underpinnings
The Glasgow Voice Memory Test: Assessing the ability to memorize and recognize unfamiliar voices
One thousand one hundred and twenty subjects as well as a developmental phonagnosic subject (KH) along with age-matched controls performed the Glasgow Voice Memory Test, which assesses the ability to encode and immediately recognize, through an old/new judgment, both unfamiliar voices (delivered as vowels, making language requirements minimal) and bell sounds. The inclusion of non-vocal stimuli
allows the detection of significant dissociations between the two categories (vocal vs. non-vocal stimuli). The distributions of accuracy and sensitivity scores (d’) reflected a wide range of individual differences in voice recognition performance in the population. As expected, KH showed a dissociation between the recognition of voices and bell sounds, her performance being significantly poorer than matched controls for voices but not for bells. By providing normative data of a large sample and by testing a developmental phonagnosic subject, we demonstrated that the Glasgow Voice Memory Test, available online and accessible fromall over the world, can be a valid screening tool (~5 min) for a preliminary detection of potential cases of phonagnosia and of “super recognizers” for voices
Electrophysiological evidence for an early processing of human voices
<p>Abstract</p> <p>Background</p> <p>Previous electrophysiological studies have identified a "voice specific response" (VSR) peaking around 320 ms after stimulus onset, a latency markedly longer than the 70 ms needed to discriminate living from non-living sound sources and the 150 ms to 200 ms needed for the processing of voice paralinguistic qualities. In the present study, we investigated whether an early electrophysiological difference between voice and non-voice stimuli could be observed.</p> <p>Results</p> <p>ERPs were recorded from 32 healthy volunteers who listened to 200 ms long stimuli from three sound categories - voices, bird songs and environmental sounds - whilst performing a pure-tone detection task. ERP analyses revealed voice/non-voice amplitude differences emerging as early as 164 ms post stimulus onset and peaking around 200 ms on fronto-temporal (positivity) and occipital (negativity) electrodes.</p> <p>Conclusion</p> <p>Our electrophysiological results suggest a rapid brain discrimination of sounds of voice, termed the "fronto-temporal positivity to voices" (FTPV), at latencies comparable to the well-known face-preferential N170.</p
Single-subject analyses of magnetoencephalographic evoked responses to the acoustic properties of affective non-verbal vocalizations
Magneto-encephalography (MEG) was used to examine the cerebral response to affective non-verbal vocalizations (ANVs) at the single-subject level. Stimuli consisted of nonverbal affect bursts from the Montreal Affective Voices morphed to parametrically vary acoustical structure and perceived emotional properties. Scalp magnetic fields were recorded in three participants while they performed a 3-alternative forced choice emotion categorization task (Anger, Fear, Pleasure). Each participant performed more than 6000 trials to allow single-subject level statistical analyses using a new toolbox which implements the general linear model (GLM) on stimulus-specific responses (LIMO-EEG). For each participant we estimated ‘simple’ models (including just one affective regressor (Arousal or Valence)) as well as ‘combined’ models (including acoustical regressors). Results from the ‘simple’ models revealed in every participant the significant early effects (as early as ~100 ms after onset) of Valence and Arousal already reported at the group-level in previous work. However, the ‘combined’ models showed that few effects of Arousal remained after removing the acoustically-explained variance, whereas significant effects of Valence remained especially at late stages. This study demonstrates (i) that single-subject analyses replicate the results observed at early stages by group-level studies and (ii) the feasibility of GLM-based analysis of MEG data. It also suggests that early modulation of MEG amplitude by affective stimuli partly reflects their acoustical properties
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
FFPACK: Finite field linear algebra package
The FFLAS project has established that exact matrix multiplication over finite fields can be performed at the speed of the highly optimized numerical BLAS routines. Since many algorithms have been reduced to use matrix multiplication in order to be able to prove an optimal theoretical complexity, this paper shows that those optimal complexity algorithms, such as LSP factorization, rank determinant and inverse computation can also be the most efficient.Le projet FFLAS a montré que le calcul d'un produit matriciel sur les corps finis peut être aussi rapide que les routines numériques BLAS; En algèbre linéaire exacte beaucoup d’algorithmes se réduisent au produit matriciel afin de prouver une complexité théorique optimale. Dans ce papier, nous montrons que les algorithmes basés sur le produit matriciel, tels que la factorisation LSP, le calcul du rang, le calcul du déterminant et l'inversion peuvent être aussi les plus efficaces en pratiqu
FFPACK: Finite field linear algebra package
The FFLAS project has established that exact matrix multiplication over finite fields can be performed at the speed of the highly optimized numerical BLAS routines. Since many algorithms have been reduced to use matrix multiplication in order to be able to prove an optimal theoretical complexity, this paper shows that those optimal complexity algorithms, such as LSP factorization, rank determinant and inverse computation can also be the most efficient.Le projet FFLAS a montré que le calcul d'un produit matriciel sur les corps finis peut être aussi rapide que les routines numériques BLAS; En algèbre linéaire exacte beaucoup d’algorithmes se réduisent au produit matriciel afin de prouver une complexité théorique optimale. Dans ce papier, nous montrons que les algorithmes basés sur le produit matriciel, tels que la factorisation LSP, le calcul du rang, le calcul du déterminant et l'inversion peuvent être aussi les plus efficaces en pratiqu
- …