99 research outputs found

    Thermal quench effects on ferroelectric domain walls

    Get PDF
    Using piezoresponse force microscopy on epitaxial ferroelectric thin films, we have measured the evolution of domain wall roughening as a result of heat-quench cycles up to 735C, with the effective roughness exponent \zeta\ changing from 0.25 to 0.5. We discuss two possible mechanisms for the observed \zeta\ increase: a quench from a thermal 1-dimensional configuration, and from a locally-equilibrated pinned configuration with a crossover from a 2- to 1-dimensional regime. We find that the post-quench spatial structure of the metastable states, qualitatively consistent with the existence of a growing dynamical length scale whose ultra slow evolution is primarily controlled by the defect configuration and heating process parameters, makes the second scenario more plausible. This interpretation suggests that pinning is relevant in a wide range of temperatures, and in particular, that purely thermal domain wall configurations might not be observable in this glassy system. We also demonstrate the crucial effects of oxygen vacancies in stabilizing domain structures.Comment: 17 pages (preprint), 4 figure

    Sputtering of benzene sample by large Ne, Ar and Kr clusters : molecular dynamics computer simulations

    Get PDF
    Molecular dynamics simulations are employed to probe the role of an impact angle on emission efficiency of organic molecules sputtered from benzene crystal bombarded by 15 keV Ne2953Ne_{2953}, Ar2953Ar_{2953}, and Kr2953Kr_{2953} clusters. It is found that both the cluster type and the angle of incidence have significant effect on the emission efficiency. The shape of the impact angle dependence does not resemble the dependence characteristic for medium size clusters (C60,Ar366C_{60}, Ar_{366}), where sputtering yield only moderately increases with the impact angle, has a shallow maximum around 40° and then decreases. On the contrary, for the large projectiles (Ne2953,Ar2953Ne_{2953}, Ar_{2953}, and Kr2953Kr_{2953}) the emission efficiency steeply increases with the impact angle, has a pronounced maximum around 55° followed by rapid signal decay. It has been found that the sputtering yield is the most sensitive to the impact angle change for Kr cluster projectiles, while change of the impact angle of Ne projectile has the smallest effect on the efficiency of material ejection

    Full control of polarization in ferroelectric thin films using growth temperature to modulate defects

    Get PDF
    P.P. and C.W. acknowledge partial support by Swiss National Science Foundation Division II grant 200021_178782. L.R.D. acknowledges support from the US National Science Foundation under grant DMR‐1708615. L.W.M. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE‐AC02‐05‐CH11231 (Materials Project program KC23MP) for the growth and study of defect structures in ferroic materials. A.B.N. gratefully acknowledges support from the Engineering and Physics Sciences Research Council (EPSRC) through grants EP/R023751/1 and EP/L017008/1.Deterministic control of the intrinsic polarization state of ferroelectric thin films is essential for device applications. Independently of the well-established role of electrostatic boundary conditions and epitaxial strain, the importance of growth temperature as a tool to stabilize a target polarization state during thin film growth is shown here. Full control of the intrinsic polarization orientation of PbTiO3 thin films is demonstrated-from monodomain up, through polydomain, to monodomain down as imaged by piezoresponse force microscopy-using changes in the film growth temperature. X-ray diffraction and scanning transmission electron microscopy reveal a variation of c-axis related to out-of-plane strain gradients. These measurements, supported by Ginzburg-Landau-Devonshire free energy calculations and Rutherford backscattering spectroscopy, point to a defect mediated polarization gradient initiated by a temperature dependent effective built-in field during growth, allowing polarization control not only under specific growth conditions, but ex-situ, for subsequent processing and device applications.Publisher PDFPeer reviewe

    Strain on ferroelectric thin films

    Get PDF

    Estimation of dual phase lag model parameters using the evolutionary algorithms

    Get PDF
    Generalization of Fourier law, in particular the introduction of two ‘delay times’ (relaxation time τq and thermalization time τT) leads to the new form of energy equation called the dual-phase-lag model (DPLM). This equation should be applied in a case of microscale heat transfer modeling. In particular, DPLM constitutes a good approximation of thermal processes which are characterized by extremely short duration (e.g. ultrafast laser pulse), extreme temperature gradients and geometrical features of domain considered (e.g. thin metal film). The aim of considerations presented in this paper is the identification of two above mentioned positive constants τq, τT. They correspond to the relaxation time, which is the mean time for electrons to change their energy states and the thermalization time, which is the mean time required for electrons and lattice to reach equilibrium. In this paper the DPLM equation is applied for analysis of thermal processes proceeding in a thin metal film subjected to a laser beam. At the stage of computations connected with the identification problem solution the evolutionary algorithms are used. To solve the problem the additional information concerning the transient temperature distribution on a metal film surface is assumed to be known

    Estimation of relaxation and thermalization times in microscale heat transfer model

    No full text
    The energy equation corresponding to the dual phase lag model (DPLM) results from the generalized form of the Fourier law, in which the two ‘delay times’ (relaxation and thermalization time) are introduced. The DPLM should be used in the case of microscale heat transfer analysis, in particular when thermal processes are characterized by extremely short duration (e.g. ultrafast laser pulse), considerable temperature gradients and very small dimensions (e.g. thin metal film). In this paper, the problem of relaxation and thermalization time identification is discussed, at the same time the heat transfer processes proceeding in the domain of a thin metal film subjected to a laser beam are analyzed. The solution presented bases on the application of evolutionary algorithms. The additional information concerning the transient temperature distribution on a metal film surface is assumed to be known. At the stage of numerical realization, the finite difference method (FDM) is used. In the final part of the paper, an example of computations is presented

    Antibacterial Properties of Polyester Fibres' Materials with Titanium Dioxide Deposited on Their Surface

    No full text
    TiO2TiO_{2} particles were deposited onto the surface of polyester (PES) material. The microbiological research were carried out on two bacteria strains: Staphylococcus aureus and Klebsiella pneumoniae, which showed antibacterial properties of the PES surfaces modified with the titanium dioxide under the influence of UV radiation

    Response to “Comment on ‘On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures’ ”

    Get PDF
    2 pages, 1 figure.Financial support by the Spanish Government Project under Grant Nos. MAT2008-06761-C03, Nanoselect CSD2007-00041, and Acción Integrada HF2007-0102, and by EU Projects MaCoMuFi under Contract No. FP6-03321 and ESTEEM under Contract No. 0260019 are acknowledged.Peer reviewe
    corecore