312 research outputs found

    Leaving Without You

    Get PDF

    The Ring of Kerry

    Get PDF

    Characterization of yeast histone H3-specific type B histone acetyltransferases identifies an ADA2-independent Gcn5p activity

    Get PDF
    BACKGROUND: The acetylation of the core histone NH(2)-terminal tails is catalyzed by histone acetyltransferases. Histone acetyltransferases can be classified into two distinct groups (type A and B) on the basis of cellular localization and substrate specificity. Type B histone acetyltransferases, originally defined as cytoplasmic enzymes that acetylate free histones, have been proposed to play a role in the assembly of chromatin through the acetylation of newly synthesized histones H3 and H4. To date, the only type B histone acetyltransferase activities identified are specific for histone H4. RESULTS: To better understand the role of histone acetylation in the assembly of chromatin structure, we have identified additional type B histone acetyltransferase activities specific for histone H3. One such activity, termed HatB3.1, acetylated histone H3 with a strong preference for free histones relative to chromatin substrates. Deletion of the GCN5 and ADA3 genes resulted in the loss of HatB3.1 activity while deletion of ADA2 had no effect. In addition, Gcn5p and Ada3p co-fractionated with partially purified HatB3.1 activity while Ada2p did not. CONCLUSIONS: Yeast extracts contain several histone acetyltransferase activities that show a strong preference for free histone H3. One such activity, termed HatB3.1, appears to be a novel Gcn5p-containing complex which does not depend on the presence of Ada2p

    Pompe Disease

    Get PDF
    Course Code: Biochemistry 5614BiochemistryData AnalyticsMolecular Genetic

    An overview of chromatin modifications

    Full text link
    The last 15 years have witnessed tremendous progress in elucidating the roles of chromatin modifications in transcription regulation, DNA repair, replication, recombination, and other genomic processes. In this issue of Biopolymers, a series of reviews will summarize recent advances in our understanding of chromatin modifying enzymes and explore unresolved questions with respect to their regulation and functions in gene expression and other nuclear processes. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 95–97, 2013.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94507/1/22158_ftp.pd

    Linker Histone H1 and H3K56 Acetylation are Antagonistic Regulators of Nucleosome Dynamics

    Get PDF
    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1

    Expanded binding specificity of the human histone chaperone NASP

    Get PDF
    NASP (nuclear autoantigenic sperm protein) has been reported to be an H1-specific histone chaperone. However, NASP shares a high degree of sequence similarity with the N1/N2 family of proteins, whose members are H3/H4-specific histone chaperones. To resolve this paradox, we have performed a detailed and quantitative analysis of the binding specificity of human NASP. Our results confirm that NASP can interact with histone H1 and that this interaction occurs with high affinity. In addition, multiple in vitro and in vivo experiments, including native gel electrophoresis, traditional and affinity chromatography assays and surface plasmon resonance, all indicate that NASP also forms distinct, high specificity complexes with histones H3 and H4. The interaction between NASP and histones H3 and H4 is functional as NASP is active in in vitro chromatin assembly assays using histone substrates depleted of H1

    The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms

    Get PDF
    Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones
    corecore