52 research outputs found

    Clinical and mutational profile of AT-rich interaction domain 1A-mutated cancers

    Get PDF
    Aim: AT-rich interaction domain 1A (ARID1A) encodes a key component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex that participates in gene expression. ARID1A alterations are quite common among cancer patients, although their role remains debated. The aim of this article was to study ARID1A-mutated cancer patients. Methods: Molecular and clinical data of cancer patients evaluated at Phase 1 Unit of Fondazione Policlinico Universitario A. Gemelli IRCCS were collected. Molecular analyses were performed using FoundationOne® CDx (Foundation Medicine Inc., Cambridge, MA, United States). Cancer patients with at least one molecular alteration in ARID1A gene were identified as ARID1A+. Results: Among the 270 patients undergoing molecular analysis, we found 25 (9%) with at least one pathogenic alteration in ARID1A. The vast majority of these patients were female (84%). The median age at diagnosis was 59; most of the cancers (15, 60%) were gynecological (especially endometrioid endometrial cancers and clear cell ovarian cancers), diagnosed at an early stage. Frameshift alterations in ARID1A were the most common (19/31, 61%) alterations. The median number of mutations in ARID1A+ population was higher compared to ARID1A– population (6 vs. 4), as well as tumor mutational burden (TMB) [20 mutations/megabase (mut/Mb) vs. 1.26 mut/Mb]. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphatase and tensin homolog (PTEN), catenin beta 1 (CTNNB1), and lysine methyltransferase 2D (MLL2) mutations were enriched in ARID1A+ population. In this cohort, ARID1A did not display any relation with response to platinum chemotherapy. Cancers with double alterations in ARID1A (ARID1A2+) were all gynecological cancers (83% endometrioid endometrial cancers). Conclusions: This analysis provides clinical and molecular details about the phenotypes of ARID1A+ cancers, in particular the subgroup of gynecologic cancers. The high frequency of concurrent mutations in the phosphoinositide 3-kinase (PI3K) pathway among endometrioid endometrial cancers may support the proposal of a new treatment strategy based on the combination of ataxia telangiectasia and Rad3-related (ATR) inhibitor and PIK3CA inhibitor

    Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome

    Get PDF
    The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities

    Other Helicobacters, gastric and gut microbiota

    Get PDF
    The current article is a review of the most important and relevant literature published in 2016 and early 2017 on non-Helicobacter pylori Helicobacter infections in humans and animals, as well as interactions between H. pylori and the microbiota of the stomach and other organs. Some putative new Helicobacter species were identified in sea otters, wild boars, dogs, and mice. Many cases of Helicobacter fennelliae and Helicobacter cinaedi infection have been reported in humans, mostly in immunocompromised patients. Mouse models have been used frequently as a model to investigate human Helicobacter infection, although some studies have investigated the pathogenesis of Helicobacters in their natural host, as was the case for Helicobacter suis infection in pigs. Our understanding of both the gastric and gut microbiome has made progress and, in addition, interactions between H. pylori and the microbiome were demonstrated to go beyond the stomach. Some new approaches of preventing Helicobacter infection or its related pathologies were investigated and, in this respect, the probiotic properties of Saccharomyces, Lactobacillus and Bifidobacterium spp. were confirmed

    Oncologic Drugs Approval in Europe for Solid Tumors: Overview of the Last 6 Years

    No full text
    (1) Background: Drug development in oncology is changing rapidly. The aim of the present study was to provide an insight into the features of anti-tumor drugs approved in Europe; (2) Methods: We included all the indications for solid tumors issued by the European Medicines Agency (EMA) between 2015 and 2020. We extracted data from European Public Assessments Reports (EPAR), including drug name, mechanism of action, setting, features of pivotal clinical trials, primary end-points, quality of life (QoL); (3) Results: In the explored period, EMA issued 132 new indications (81 indications’ extensions) for 62 oncology drugs. In about half of indications (47%), the approval was biomarker-based. Immune check point inhibitors (ICIs) and signal transduction inhibitors were the two most representative drug categories (62%). Most of the indications were for the advanced setting (91%) and front-line therapy (66%). The most common tumor types were non-small cell lung cancer (24%), breast (16%), and melanoma (10%). Two thirds of the indications (73%) were approved based on phase III trials. Overall survival (OS) represented the primary end-point only in 39% of indications, mainly limited to advanced setting (98%) and ICI trials (80%). Almost all (94%) cell cycle and DNA repair mechanism inhibitors were approved based on progression free survival (PFS) data. In pivotal trials with signal transduction inhibitors, objective response rate (ORR) was the prevalent (45%) primary end-point. QoL was never considered as primary end-point; (4) Conclusions: In this analysis, we intended to offer an updated picture of the recent drug development in oncology. Most of the efforts led to broadening indications of pre-existing molecules, with signal transduction inhibitor and ICIs contending the leadership. Twenty-seven percent of the indication were approved without a phase III trial. The majority of drugs entered the market without evidence of OS or QoL benefit but based on surrogate outcomes

    Oncologic Drugs Approval in Europe for Solid Tumors: Overview of the Last 6 Years

    No full text
    (1) Background: Drug development in oncology is changing rapidly. The aim of the present study was to provide an insight into the features of anti-tumor drugs approved in Europe; (2) Methods: We included all the indications for solid tumors issued by the European Medicines Agency (EMA) between 2015 and 2020. We extracted data from European Public Assessments Reports (EPAR), including drug name, mechanism of action, setting, features of pivotal clinical trials, primary end-points, quality of life (QoL); (3) Results: In the explored period, EMA issued 132 new indications (81 indications’ extensions) for 62 oncology drugs. In about half of indications (47%), the approval was biomarker-based. Immune check point inhibitors (ICIs) and signal transduction inhibitors were the two most representative drug categories (62%). Most of the indications were for the advanced setting (91%) and front-line therapy (66%). The most common tumor types were non-small cell lung cancer (24%), breast (16%), and melanoma (10%). Two thirds of the indications (73%) were approved based on phase III trials. Overall survival (OS) represented the primary end-point only in 39% of indications, mainly limited to advanced setting (98%) and ICI trials (80%). Almost all (94%) cell cycle and DNA repair mechanism inhibitors were approved based on progression free survival (PFS) data. In pivotal trials with signal transduction inhibitors, objective response rate (ORR) was the prevalent (45%) primary end-point. QoL was never considered as primary end-point; (4) Conclusions: In this analysis, we intended to offer an updated picture of the recent drug development in oncology. Most of the efforts led to broadening indications of pre-existing molecules, with signal transduction inhibitor and ICIs contending the leadership. Twenty-seven percent of the indication were approved without a phase III trial. The majority of drugs entered the market without evidence of OS or QoL benefit but based on surrogate outcomes

    Effect of Alginate Lyase on Biofilm-Grown Helicobacter pylori Probed by Atomic Force Microscopy

    Get PDF
    Helicobacter pylori (H. pylori) is a microorganism with a pronounced capability of adaptation under environmental stress solicitations. Its persistence and antimicrobial resistance to the drugs commonly used in the anti-H. pylori therapy are associated with the development of a biofilm mainly composed of DNA, proteins, and polysaccharides. A fundamental step to increase the success of clinical treatments is the development of new strategies and molecules able to interfere with the biofilm architecture and thus able to enhance the effects of antibiotics. By using Atomic Force Microscopy and Scanning Electron Microscopy we analyzed the effects of the alginate lyase (AlgL), an enzyme able to degrade a wide class of polysaccharides, on the H. pylori shape, surface morphology, and biofilm adhesion properties. We demonstrated that AlgL generates a noticeable loss of H. pylori coccoid form in favor of the bacillary form and reduces the H. pylori extracellular polymeric substances (EPS)

    The polyamine N-acetyltransferase-like enzyme PmvE plays a role in the virulence of Enterococcus faecalis

    No full text
    We previously showed that the mutant strain of Enterococcus faecalis lacking the transcriptional regulator SlyA is more virulent than the parental strain. We hypothesized that this phenotype was due to overexpression of the second gene of the slyA operon, ef_3001, renamed pmvE (for polyamine metabolism and virulence of E. faecalis). PmvE shares strong homologies with N(1)-spermidine/spermine acetyltransferase enzymes involved in the metabolism of polyamines. In this study, we used an E. faecalis strain carrying the recombinant plasmid pMSP3535-pmvE (V19/p3535-pmvE), which allows the induction of pmvE by addition of nisin. Thereby, we showed that the overexpression of PmvE increased the virulence of E. faecalis in the Galleria mellonella infection model, as well as the persistence within peritoneal macrophages. We were also able to show a direct interaction between the His-tagged recombinant PmvE (rPmvE) protein and putrescine by the surface plasmon resonance (SPR) technique on a Biacore instrument. Moreover, biochemical assays showed that PmvE possesses an N-acetyltransferase activity toward polyamine substrates. Our results suggest that PmvE contributes to the virulence of E. faecalis, likely through its involvement in the polyamine metabolism

    PROFILO DELLA RISPOSTA ANTICORPALE A CANDIDA ALBICANS IN DIFFERENTI CATEGORIE DI PAZIENTI A RISCHIO DI INFEZIONI FUNGINE INVASIVE

    No full text
    L’aumento continuo nel numero e nella tipologia dei pazienti immunocompromessi comporta un continuo incremento dei casi di infezioni fungine invasive (IFI), il cui esito infausto è spesso ascrivibile al ritardo nella diagnosi e conseguentemente all’impossibilità di instaurare una precoce ed appropriata terapia antifungina. La candidosi invasiva (IC), particolarmente frequente, riveste un ruolo di primaria importanza tra le IFI, visto anche l’elevato tasso di mortalità (30-50%). I metodi comunemente impiegati nella diagnosi di IFI sono spesso caratterizzati da lunghi tempi di indagine oltre che da scarsa sensibilità e specificità. Grazie all’impiego di nuove tecnologie particolarmente versatili e molto sensibili (es: microarray proteici), studi recenti hanno riproposto la sierologia come percorso diagnostico rilevante nella identificazione rapida e precoce di IC. In particolare, sono state fornite le prime evidenze circa la presenza di specifici marker immunologici in grado di portare alla distinzione tra pazienti affetti da IC e soggetti di controllo. Alla luce di questi dati, abbiamo messo a punto un microarray proteico per la rilevazione dei titoli anticorpali IgG nei confronti di 10 diversi antigeni ricombinanti di C. albicans (Adh, Als-3, Bgl-2, Fba, Grp, Hwp-1, Pdc, Pgk e due diverse forme ricombinanti di Eno-1) e di 1 antigene purificato (Eno-1) dalla parete. Mediante questo chip, vengono saggiati sieri da diverse categorie di soggetti (pazienti affetti da IC, pazienti ospedalizzati per patologie non IFI e soggetti sani di controllo). I dati finora ottenuti mostrano come i livelli di anticorpi nei confronti di alcuni antigeni, in particolare Eno-1, Grp e Pgk, siano più alti nei pazienti con IC rispetto alle altre categorie di soggetti considerati. Una volta acquisiti sufficienti dati, verranno fatte valutazioni di tipo statistico e sarà quindi possibile stabilire l’efficacia di questo nuovo percorso di indagine, sia nell’individuazione che nel monitoraggio di soggetti con e/o a rischio di IFI
    • …
    corecore