242 research outputs found

    Electromagnetic topology: Characterization of internal electromagnetic coupling

    Get PDF
    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference

    Towards optimal sensor deployment for location tracking in smart home

    Get PDF
    International audienceAmbient Assisted Living (AAL) aims to ease the daily living and working environmentfor disabled/elderly peopleat home. AAL use information and communication technology based on sensors data. These sensors are generally placed randomly without taking into account the layout of buildings and rooms. In this paper, we develop a mathematical model foroptimal sensor placement in order (i) to optimize the sensor number with regard to room features, (ii) to ensure a reliability level in sensor networkconsidering a sensor failure rate. This placement ensures the targettracking in smart home sinceoptimizing sensorplacement allow us to distinguish different zonesand consequently, to identify the target location, according to the activated sensors

    Safety, Tolerability, Pharmacokinetics and Initial Pharmacodynamics of a Subcommissural Organ-Spondin-Derived Peptide:A Randomized, Placebo-Controlled, Double-Blind, Single Ascending Dose First-in-Human Study

    Get PDF
    Introduction This randomized, double-blind, placebo-controlled study in healthy volunteers assessed the safety, tolerability, and pharmacokinetics of single ascending doses of intravenously administered NX210-a linear peptide derived from subcommissural organ-spondin-and explored the effects on blood/urine biomarkers and cerebral activity. Methods Participants in five cohorts (n = 8 each) were randomized to receive a single intravenous dose of NX210 (n = 6 each) (0.4, 1.25, 2.5, 5, and 10 mg/kg) or placebo (n = 2 each); in total, 10 and 29 participants received placebo and NX210, respectively. Blood samples were collected for pharmacokinetics within 180 min post dosing. Plasma and urine were collected from participants (cohorts: 2.5, 5, and 10 mg/kg) for biomarker analysis and electroencephalography (EEG) recordings within 48 h post dosing. Safety/tolerability and pharmacokinetic data were assessed before ascending to the next dose. Results The study included 39 participants. All dosages were safe and well tolerated. All treatment-emergent adverse events (n = 17) were of mild severity and resolved spontaneously (except one with unknown outcome). Twelve treatment-emergent adverse events (70.6%) were deemed drug related; seven of those (58.3%) concerned nervous system disorders (dizziness, headache, and somnolence). The pharmacokinetic analysis indicated a short half-life in plasma (6-20 min), high apparent volume of distribution (1870-4120 L), and rapid clearance (7440-16,400 L/h). In plasma, tryptophan and homocysteine showed dose-related increase and decrease, respectively. No drug dose effect was found for the glutamate or glutamine plasma biomarkers. Nevertheless, decreased blood glutamate and increased glutamine were observed in participants treated with NX210 versus placebo. EEG showed a statistically significant decrease in beta and gamma bands and a dose-dependent increasing trend in alpha bands. Pharmacodynamics effects were sustained for several hours (plasma) or 48 h (urine and EEG). Conclusion NX210 is safe and well tolerated and may exert beneficial effects on the central nervous system, particularly in terms of cognitive processing

    Cell autonomy of the mouse claw paw mutation.

    Get PDF
    Mice homozygous for the autosomal recessive mutation claw paw (clp) are characterized by limb posture abnormalities and congenital hypomyelination, with delayed onset of myelination of the peripheral nervous system but not the central nervous system. Although this combination of limb and peripheral nerve abnormalities in clp/clp mice might suggest a common neurogenic origin of the syndrome, it is not clear whether the clp gene acts primarily in the neurone, the Schwann cell or both. In the work described here, we address this question of cell autonomy of the clp mutation through reciprocal nerve grafting experiments between wild-type and clp/clp animals. Our results demonstrate that the clp mutation affects the Schwann cell compartment and possibly also the neuronal compartment. These data suggest that the clp gene product is expressed in Schwann cells as well as neurones and is likely to be involved in direct axon--Schwann cell interactions. Within the Schwann cell, clp affects a myelin-related signaling pathway that regulates periaxin and Krox-20 expression, but not Oct-6

    Analysis of talpid3 and wild-type chicken embryos reveals roles for Hedgehog signalling in development of the limb bud vasculature

    Get PDF
    Chicken talpid mutant embryos have a wide range of Hedgehog-signalling related defects and it is now known that the talpid gene product encodes a novel protein essential for Hedgehog signalling which is required for both activator and repressor functions of Gli transcription factors (Davey, M.G., Paton, I.R., Yin, Y., Schmidt, M., Bangs, F.K., Morrice, D.R., Gordon-Smith, T., Buxton, P., Stamataki, D., Tanaka, M., Münsterberg, A.E., Briscoe, J., Tickle, C., Burt, D.W. (2006). The chicken talpid gene encodes a novel protein essential for Hedgehog signalling. Genes Dev 20 1365-77). Haemorrhaging, oedema and other severe vascular defects are a central aspect of the talpid phenotype (Ede, D.A. and Kelly, W.A (1964a). Developmental abnormalities in the head region of the talpid mutant fowl. J. Embryol. exp. Morp. 12:161-182) and, as Hedgehog (Hh) signalling has been implicated in every stage of development of the vascular system, the vascular defects seen in talpid are also likely to be attributable to abnormal Hedgehog signalling. Gene expression of members of the VEGF and Angiopoietin families of angiogenic growth factors has been linked to haemorrhaging and oedema and we find widespread expression of VEGF-D, rigf and Ang2a in the talpid limb. Furthermore, ectopic expression of these genes in talpid limbs points to regulation via Gli repression rather than activation. We monitored specification of vessel identity in talpid limb vasculature by examining expression of artery-specific genes, Np1 and EphrinB2, and the vein-specific genes, Np2a and Tie2. We show that there are supernumerary subclavian arteries in talpid limb buds and abnormal expression of an artery-specific gene in the venous submarginal sinus, despite the direction of blood flow being normal. Furthermore, we show that Shh can induce Np1 expression but has no effect on Np2a. Finally, we demonstrate that induction of VEGF and Ang2a expression by Shh in normal limb buds is accompanied by vascular remodelling. Thus Hedgehog signalling has a pivotal role in the cascade of angiogenic events in a growing embryonic organ which is similar to that proposed in tumours

    Enteric Neural Crest Differentiation in Ganglioneuromas Implicates Hedgehog Signaling in Peripheral Neuroblastic Tumor Pathogenesis

    Get PDF
    Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways
    corecore