38 research outputs found

    Population Attributable Risk of Unintentional Childhood Poisoning in Karachi Pakistan

    Get PDF
    Background: The percentage of unintentional childhood poisoning cases in a given population attributable to specific risk factors (i.e., the population attributable risk) which can be calculated, determination of such risk factors associated with potentially modifiable risk factors, are necessary to focus on the prevention strategies. Methods: We calculated PARs, using 120 cases with unintentional poisoning and 360 controls in a hospital based matched case- control study. The risk factors were accessibility to hazardous chemicals and medicines due to unsafe storage, child behavior reported as hyperactive, storage of kerosene and petroleum in soft drink bottles, low socioeconomic class, less education of the mother and the history of previous poisoning. Results: The Following Attrubuted Risks Were Observed: 12% (95% confidence interval [CI] = 8%-16%) for both chemicals and medicines stored unsafe, 19% (15%-23%) for child reported as hyperactive, 40% (38%-42%) for storage of kerosene and petroleum in soft drink bottles, 48% (42%-54%) for low socioeconomic status, 38% (32%-42%) for no formal mothers education and 5.8% (2%-10%) for history of previous poisoning. 48% of cases for overall study population which could be attributed to at least one of the six risk factors. Among girls, this proportion was 23% and 43% among boys. About half of the unintentional childhood poisoning cases in this Pakistani population could be avoided. Conclusion: Exposure to potentially modifiable risk indicators explained about half of the cases of unintentional poisoning among children under five years of age in this Pakistani population, indicating the theoretical scope for prevention of the disease

    The value of plantation forests for plant, invertebrate and bird diversity and the potential for cross-taxon surrogacy

    Get PDF
    As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Fire-Vegetation Feedbacks and Alternative States: Common Mechanisms of Temperate Forest Vulnerability to Fire in Southern South America and New Zealand

    No full text
    In the context of global warming and increasing impacts of invasive plants and animals, we examine how positive fire–vegetation feedbacks are increasing the vulnerability of pyrophobic temperate forests to conversion to pyrophytic non-forest vegetation in southern South America and New Zealand. We extensively review the relevant literature to reveal how these temperate southern hemisphere floras have generated similar positive fire–vegetation feedback mechanisms resulting in increased vulnerability to anthropogenically altered fire regimens. For the two regions, we address the following questions. 1. What are the major plant species, physiognomic types and functional types characteristic of pyrophytic versus pyrophobic vegetation types and how do their traits affect flammability, resistance to fire and recovery after fire? 2. What are the roles of herbivory and microclimate in enhancing fire–vegetation feedbacks? 3. Are there similarities in trends of cover type transitions in relation to altered fire regimens? 4. How are climate change, land-use trends and the effects of introduced plants and animals affecting the vulnerability of these ecosystems to fire-induced transitions to alternative stable states? Most temperate forests of New Zealand and southern South America evolved under conditions of low fire frequencies so few taxa became adapted to recurrent fire. Current dichotomous landscapes consisting of juxtaposed pyrophobic and pyrophytic vegetation types are the outcome of the expansion of fire-resilient and fire-promoting species associated with the arrival of humans. Despite considerable differences in human history and biogeographic history, the case studies presented here show remarkable parallels in life-history traits of the key pyrophobic taxa, fire–vegetation feedback mechanisms, overall ecosystem responses to anthropogenic alteration of fire regimens, and likely vulnerability to expected global change influences on future fire regimens

    Ormiscodes outbreaks dynamics: Impacts and perspectives in a warming world

    No full text
    Changes in the frequency and magnitude of insect outbreak appear to be occurring worldwide, but research has been mainly focused on northern hemisphere forests. In the temperate forests of the southern Andes, Nothofagus tree species experience severe defoliation caused by Ormiscodes caterpillars (Lepidoptera: Saturniidae). Current impacts of defoliation on tree health are relatively low and short term. Although relationships between Ormiscodes outbreaks and climate proved to be complex, defoliation events are generally associated with drier and warmer than average growing seasons. However, these probable climatic influences on outbreak occurrence are contingent on the sensitivity of Nothofagus and Ormiscodes to temperature and precipitation along environmental gradients. Relationships between Ormiscodes outbreaks and climate suggest that under predicted warmer and drier climates in the twenty-first century, these defoliator outbreaks may become more frequent and contribute to future forest decline in Nothofagus forests.Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand

    No full text
    In the context of global warming and increasing impacts of invasive plants and animals, we examine how positive fire–vegetation feedbacks are increasing the vulnerability of pyrophobic temperate forests to conversion to pyrophytic non-forest vegetation in southern South America and New Zealand. We extensively review the relevant literature to reveal how these temperate southern hemisphere floras have generated similar positive fire–vegetation feedback mechanisms resulting in increased vulnerability to anthropogenically altered fire regimens. For the two regions, we address the following questions. 1. What are the major plant species, physiognomic types and functional types characteristic of pyrophytic versus pyrophobic vegetation types and how do their traits affect flammability, resistance to fire and recovery after fire? 2. What are the roles of herbivory and microclimate in enhancing fire–vegetation feedbacks? 3. Are there similarities in trends of cover type transitions in relation to altered fire regimens? 4. How are climate change, land-use trends and the effects of introduced plants and animals affecting the vulnerability of these ecosystems to fire-induced transitions to alternative stable states? Most temperate forests of New Zealand and southern South America evolved under conditions of low fire frequencies so few taxa became adapted to recurrent fire. Current dichotomous landscapes consisting of juxtaposed pyrophobic and pyrophytic vegetation types are the outcome of the expansion of fire-resilient and fire-promoting species associated with the arrival of humans. Despite considerable differences in human history and biogeographic history, the case studies presented here show remarkable parallels in life-history traits of the key pyrophobic taxa, fire–vegetation feedback mechanisms, overall ecosystem responses to anthropogenic alteration of fire regimens, and likely vulnerability to expected global change influences on future fire regimens.Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Perry, G.L.W.. University of Auckland; Nueva ZelandaFil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Tepley, A. J.. Smithsonian Conservation Biology Institute; Estados UnidosFil: Holz, Andrés. Portland State University; Estados UnidosFil: Veblen, Thomas. University of Colorado; Estados Unido

    Data from: Influences of fire–vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes

    No full text
    1. In the context of on-going climatic warming, forest landscapes face increasing risk of conversion to non-forest vegetation through alteration of their fire regimes and their post-fire recovery dynamics. However, this pressure could be amplified or dampened, depending on how fire-driven changes to vegetation feed back to alter the extent or behavior of subsequent fires. 2. Here we develop a mathematical model to formalize understanding of how fire–vegetation feedbacks and the time to forest recovery following high-severity (i.e., stand-replacing) fire affect the extent and stability of forest cover across landscapes facing altered fire regimes. We evaluate responses to increasing burn rates while varying the direction (negative vs. positive) of fire–vegetation feedbacks under a continuum of values for feedback strength and post-fire recovery time to determine how interactions among these variables produce thresholds and tipping points in landscape responses to changing fire regimes. 3. Where the early-seral vegetation is less fire-prone than older forests, negative feedbacks limited the reductions in forest cover in response to increased fire frequency or slower forest recovery. By contrast, positive feedbacks (more flammable early-seral vegetation) produced a tipping point beyond which increased burn rates or slower forest recovery drove extensive forest loss. 4. With negative feedbacks, the rates of forest loss and expansion in response to variation in fire frequency were similar. However, where feedbacks are positive, the conversion from predominantly forested to non-forested conditions in response to increased fire frequency was faster than the re-expansion of forest cover following a return to the initial burn rate. Strengthening the positive feedbacks increased this asymmetry. 5. Synthesis. Our analyses elucidate how fire–vegetation feedbacks and post-fire recovery rates interact to affect the trajectories and rates of landscape response to altered fire regimes. We illustrate the vulnerability of ecosystems with positive fire–vegetation feedbacks to climate change-driven increases in fire activity, especially where post-fire recovery is slow. Although negative feedbacks initially provide resistance to forest loss with increasing burn rates, this resistance is eventually overwhelmed with sufficient increases to burn rates relative to recovery times
    corecore