278 research outputs found

    Recurrent epimutations activate gene body promoters in primary glioblastoma

    Get PDF
    Aberrant DNA hypomethylation may play an important role in the growth rate of glioblastoma (GBM), but the functional impact on transcription remains poorly understood. We assayed the GBM methylome with MeDIP-seq and MRE-seq, adjusting for copy number differences, in a small set of non-glioma CpG island methylator phenotype (non-G-CIMP) primary tumors. Recurrent hypomethylated loci were enriched within a region of chromosome 5p15 that is specified as a cancer amplicon and also encompasses TERT, encoding telomerase reverse transcriptase, which plays a critical role in tumorigenesis. Overall, 76 gene body promoters were recurrently hypomethylated, including TERT and the oncogenes GLI3 and TP73. Recurring hypomethylation also affected previously unannotated alternative promoters, and luciferase reporter assays for three of four of these promoters confirmed strong promoter activity in GBM cells. Histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq on tissue from the GBMs uncovered peaks that coincide precisely with tumor-specific decrease of DNA methylation at 200 loci, 133 of which are in gene bodies. Detailed investigation of TP73 and TERT gene body hypomethylation demonstrated increased expression of corresponding alternate transcripts, which in TP73 encodes a truncated p73 protein with oncogenic function and in TERT encodes a putative reverse transcriptase-null protein. Our findings suggest that recurring gene body promoter hypomethylation events, along with histone H3K4 trimethylation, alter the transcriptional landscape of GBM through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein

    Single-Cell Genetic Analysis Reveals Insights into Clonal Development of Prostate Cancers and Indicates Loss of PTEN as a Marker of Poor Prognosis

    Get PDF
    Gauging the risk of developing progressive disease is a major challenge in prostate cancer patient management. We used genetic markers to understand genomic alteration dynamics during disease progression. By using a novel, advanced, multicolor fluorescence in situ hybridization approach, we enumerated copy numbers of six genes previously identified by array comparative genomic hybridization to be involved in aggressive prostate cancer [TBL1XR1, CTTNBP2, MYC (alias c-myc), PTEN, MEN1, and PDGFB] in six nonrecurrent and seven recurrent radical prostatectomy cases. An ERG break-apart probe to detect TMPRSS2-ERG fusions was included. Subsequent hybridization of probe panels and cell relocation resulted in signal counts for all probes in each individual cell analyzed. Differences in the degree of chromosomal and genomic instability (ie, tumor heterogeneity) or the percentage of cells with TMPRSS2-ERG fusion between samples with or without progression were not observed. Tumors from patients that progressed had more chromosomal gains and losses, and showed a higher degree of selection for a predominant clonal pattern. PTEN loss was the most frequent aberration in progressers (57%), followed by TBL1XR1 gain (29%). MYC gain was observed in one progresser, which was the only lesion with an ERG gain, but no TMPRSS2-ERG fusion. According to our results, a probe set consisting of PTEN, MYC, and TBL1XR1 would detect progressers with 86% sensitivity and 100% specificity. This will be evaluated further in larger studies

    Detection of recurrent rearrangement breakpoints from copy number data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variants (CNVs), including deletions, amplifications, and other rearrangements, are common in human and cancer genomes. Copy number data from array comparative genome hybridization (aCGH) and next-generation DNA sequencing is widely used to measure copy number variants. Comparison of copy number data from multiple individuals reveals recurrent variants. Typically, the interior of a recurrent CNV is examined for genes or other loci associated with a phenotype. However, in some cases, such as gene truncations and fusion genes, the target of variant lies at the boundary of the variant.</p> <p>Results</p> <p>We introduce Neighborhood Breakpoint Conservation (NBC), an algorithm for identifying rearrangement breakpoints that are highly conserved at the same locus in multiple individuals. NBC detects recurrent breakpoints at varying levels of resolution, including breakpoints whose location is exactly conserved and breakpoints whose location varies within a gene. NBC also identifies pairs of recurrent breakpoints such as those that result from fusion genes. We apply NBC to aCGH data from 36 primary prostate tumors and identify 12 novel rearrangements, one of which is the well-known TMPRSS2-ERG fusion gene. We also apply NBC to 227 glioblastoma tumors and predict 93 novel rearrangements which we further classify as gene truncations, germline structural variants, and fusion genes. A number of these variants involve the protein phosphatase PTPN12 suggesting that deregulation of PTPN12, via a variety of rearrangements, is common in glioblastoma.</p> <p>Conclusions</p> <p>We demonstrate that NBC is useful for detection of recurrent breakpoints resulting from copy number variants or other structural variants, and in particular identifies recurrent breakpoints that result in gene truncations or fusion genes. Software is available at <url>http://http.//cs.brown.edu/people/braphael/software.html</url>.</p

    千葉大学泌尿器科第1回同門会発表

    Get PDF
    BackgroundWhile programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) checkpoint inhibitors have activity in a proportion of patients with advanced bladder cancer, strongly predictive and prognostic biomarkers are still lacking. In this study, we evaluated PD-L1 protein expression on circulating tumor cells (CTCs) isolated from patients with muscle invasive (MIBC) and metastatic (mBCa) bladder cancer and explore the prognostic value of CTC PD-L1 expression on clinical outcomes.MethodsBlood samples from 25 patients with MIBC or mBCa were collected at UCSF and shipped to Epic Sciences. All nucleated cells were subjected to immunofluorescent (IF) staining and CTC identification by fluorescent scanners using algorithmic analysis. Cytokeratin expressing (CK)+ and (CK)-CTCs (CD45-, intact nuclei, morphologically distinct from WBCs) were enumerated. A subset of patient samples underwent genetic characterization by fluorescence in situ hybridization (FISH) and copy number variation (CNV) analysis.ResultsCTCs were detected in 20/25 (80 %) patients, inclusive of CK+ CTCs (13/25, 52 %), CK-CTCs (14/25, 56 %), CK+ CTC Clusters (6/25, 24 %), and apoptotic CTCs (13/25, 52 %). Seven of 25 (28 %) patients had PD-L1+ CTCs; 4 of these patients had exclusively CK-/CD45-/PD-L1+ CTCs. A subset of CTCs were secondarily confirmed as bladder cancer via FISH and CNV analysis, which revealed marked genomic instability. Although this study was not powered to evaluate survival, exploratory analyses demonstrated that patients with high PD-L1+/CD45-CTC burden and low burden of apoptotic CTCs had worse overall survival.ConclusionsCTCs are detectable in both MIBC and mBCa patients. PD-L1 expression is demonstrated in both CK+ and CK-CTCs in patients with mBCa, and genomic analysis of these cells supports their tumor origin. Here we demonstrate the ability to identify CTCs in patients with advanced bladder cancer through a minimally invasive process. This may have the potential to guide checkpoint inhibitor immune therapies that have been established to have activity, often with durable responses, in a proportion of these patients

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Get PDF
    corecore