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Single-Cell Genetic Analysis Reveals Insights into Clonal
Development of Prostate Cancers and Indicates Loss of
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Gauging the risk of developing progressive disease is a major challenge in prostate cancer patient
management. We used genetic markers to understand genomic alteration dynamics during disease
progression. By using a novel, advanced, multicolor fluorescence in situ hybridization approach, we
enumerated copy numbers of six genes previously identified by array comparative genomic hybridization
to be involved in aggressive prostate cancer [TBL1XR1, CTTNBP2, MYC (alias c-myc), PTEN, MEN1, and
PDGFB] in six nonrecurrent and seven recurrent radical prostatectomy cases. An ERG break-apart probe
to detect TMPRSS2-ERG fusions was included. Subsequent hybridization of probe panels and cell relo-
cation resulted in signal counts for all probes in each individual cell analyzed. Differences in the degree
of chromosomal and genomic instability (ie, tumor heterogeneity) or the percentage of cells with
TMPRSS2-ERG fusion between samples with or without progression were not observed. Tumors from
patients that progressed had more chromosomal gains and losses, and showed a higher degree of
selection for a predominant clonal pattern. PTEN loss was the most frequent aberration in progressers
(57%), followed by TBL1XR1 gain (29%). MYC gain was observed in one progresser, which was the only
lesion with an ERG gain, but no TMPRSS2-ERG fusion. According to our results, a probe set consisting of
PTEN, MYC, and TBL1XR1 would detect progressers with 86% sensitivity and 100% specificity. This will
be evaluated further in larger studies. (Am J Pathol 2014, 184: 2671e2686; http://dx.doi.org/
10.1016/j.ajpath.2014.06.030)
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Prostate cancer is the most commonly diagnosed non-
cutaneous neoplasm among US males (238,590 estimated
cases in 2013) and is the second leading cause of cancer-
related deaths (29,720 estimated deaths).1 Disease incidence
exceeds mortality by a factor of 8; this suggests that many
prostate cancers do not result in disease-associated death.
This observation is attributable to the fact that many prostate
cancers do not progress to metastatic disease. Patients with
more indolent tumors would benefit from an active sur-
veillance approach. Men with aggressive disease, however,
stigative Pathology.
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need immediate and often adjuvant therapy after radical
prostatectomy (RP) to improve survival. Although serum-
level screening for prostate-specific antigen (PSA) has
increased detection of prostate cancer at earlier stages,2

sensitive and specific tests to distinguish men with indo-
lent disease from men with aggressive prostate cancers are
still lacking, which generates a dilemma in how to adapt
risk-associated treatments.3

Numerous studies have identified genomic changes as
potential predictors of progression.3e8 Perhaps the best-
known tumor marker specific to prostate cancer is the
fusion of TMPRSS2 and ERG on chromosome 21.9 Fusions
of these two genes have been observed in approximately 30%
to 60% of prostate cancers,9e17 but whether the gene fusion
predicts tumor progression is controversial.12,18,19 One
explanation might be that many possible TMPRSS2-ERG
fusions exist, which result in transcripts with different con-
sequences for disease prognostication.13,20e22 An additional
problem in elucidating the role of TMPRSS2-ERG in tumor
progression might be intratumor heterogeneity.23e25

Deep sequencing of somatic mutations26e28 and ap-
proaches to enumerate copy number variation on the level of
single cells29e31 in cancer have led to increasing recognition
of the importance of such intratumor heterogeneity in cancer
progression. Herein, we explore intratumor heterogeneity of
prostate tumors using a special break-apart probe for the
TMPRSS2-ERG fusion10 and six single-gene probes selected
on the basis of a prior array comparative genome hybridi-
zation (aCGH) study.32 Paris et al32 screened prostate can-
cers treated with RP from patients with similar high
recurrence risk, but different clinical outcomes, for chro-
mosomal aberrations with aCGH. Comparison with an in-
dependent set of metastases revealed approximately 40
candidate markers associated with metastatic potential. For
the current study, we chose six of these markers (listed herein
in chromosome order)dTBL1XR1 (3q26.23), CTTNBP2
(7q31.2), MYC (alias c-myc; 8q24.21), PTEN (10q23.1),
MEN1 (11q13), and PDGFB (22q13.1)dto be tested for
their potential use as indicators of progressive disease. The
markers and two centromeric control/enumerator probes
(CEP8 and CEP10) were applied as fluorescence in situ hy-
bridization (FISH) probes to single-cell suspensions prepared
from archived formalin-fixed, paraffin-embedded (FFPE)
material for a subset of cases from the original study32 (ie,
seven prostate cancers from patients with recurrence and six
tumors from patients without recurrence after RP). Our novel
approach of multiplexing FISH probes31 allowed signal
enumeration in the same cells.

Probes were selected on the basis of the aCGH loci map-
ping to a gene. Two of the gene probes represent genes with
well-known roles in prostate cancers, MYC33,34 and
PTEN.35,36 Many prostate cancer studies have reported the
co-occurrence of TMPRSS2-ERG fusion and loss of
PTEN37,38; others have reported the co-occurrence of gain of
MYC and loss of PTEN.39,40 A third gene in our probe set,
MEN1, is a known cancer-associated gene, but with few
2672
studies in prostate cancer. TBL1XR1, CTTNBP2, and
PDGFB have rarely been the objects of targeted studies in
prostate cancer, but there is evidence supporting their po-
tential relevance to prostate cancer.
Biallelic inactivation of MEN1 results in multiple endo-

crine neoplasia, type 1,41 leading to hormone-related tu-
mors, and MEN1 is considered to function as a classic tumor
suppressor. Men1þ/� mice are susceptible to prostate can-
cer.42 In human prostate cancer, however, MEN1 has copy
number gains and is usually overexpressed, making it an
oncogene.43,44

TBL1XR1 is an E3 ubiquitin ligase, which is expressed in
the prostate.45 One of its principal functions is to recruit
b-catenin to the promoters of Wnt target genes.46 The
b-catenin binding leads to increased transcription of
lymphoid enhancer-binding factor 1 target genes by dis-
placing proteins of the transcriptional repressor family called
transducing-like enhancers from lymphoid enhancer-binding
factor 1.47 Evidence implicating increased nuclear location of
b-catenin in prostate cancer and its progression includes the
following: i) various associations between increased Wnt
signaling and prostate cancer metastasis to the bone, ii) so-
matic mutations in specific regions of CTNNB1, the gene
encoding b-catenin, in 5% of prostate cancers, iii) signifi-
cantly increased frequency of positive nuclear staining for b-
catenin in prostate cancers, and iv) both direct and indirect
regulatory effects of b-catenin binding to the AR gene, which
encodes the androgen receptor.48

As forMEN1, whether TBL1XR1 functions as an oncogene
or as a tumor suppressor varies by tumor type. TBL1XR1 is
overexpressed and in a region of recurrent copy number gains
in lung cancer49 and in breast cancer.50 However, TBL1XR1
is recurrently mutated or deleted in hematological malig-
nancies,50 and its expression inhibits the growth of head and
neck cancer cells.45

Platelet-derived growth factor (PDGF) comprises a set of
four ligands (PDGFs A, B, C, and D) that bind to two re-
ceptors (PDGFRA and PDGFRB) to deliver signals that
affect cell growth, cell shape, and chemotaxis.51 PDGFRA
and PDGFRB, which encode the receptor units, are overex-
pressed in bone marrow metastases of prostate cancer,52 and
higher PDGFRB expression is part of a five-gene expression-
based predictor for prostate cancer recurrence.53 There is a
competition between two of its ligands, PDGFB and
PDGFD, in prostate cancer, such that when PTEN is lost,
PDGFD is preferred.54

CTTNBP2 influences the size and number of dendritic
spines.55 CTTNBP2 has roles in other tissues, including
binding of the RAD21-cohesin complex.56 More specific to
prostate cancer, CTTNBP2 is in a block of genes on chro-
mosome 7 that is differentially methylated in prostate cancer
cell lines.57

We applied two layers of analysis to this panel of FISH
probes. First, we pursued the conventional strategy of
profiling the probe set in subsets of tumor samples from RP
patients with different clinical outcomes (herein, non-
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Genetic Markers for Prostate Cancer
progressers and progressers) to identify combinations of
probes that distinguish patient groups. We also pursued a
novel, unconventional goal of building a mathematical
model of cellular-level progression for each tumor sample
and derived test statistics that can collectively distinguish
the two groups of patients.58 The first goal is fulfilled with a
candidate three-probe test, which effectively distinguishes
progressers from non-progressers in our study; however, it
will require validation in a larger sample. Independent of
that, our modeling work provided insights into genome
dynamics of prostate cancer progression.

Materials and Methods

Materials

FFPE surgery specimens of prostate carcinomas from six
patients with non-progressive disease and seven patients
with progressive disease after RP were retrieved from the
archives of the Tissue Core at the Helen Diller Family
Comprehensive Cancer Center, University of California
(San Francisco, CA), using samples designated for research
purposes. Recurrence or progressive disease was defined as
two consecutive PSA measurements within 1 year of �0.2
ng/mL and/or evidence of metastatic disease. The clinical
data are summarized in Table 1.

The material was prepared using a dividing procedure
that has been described previously.31 The hematoxylin and
eosin (H&E)estained sections were used to verify that each
section consisted of at least 50% tumor material. The 50-mm
unstained sections were then disintegrated, and cytospins
were prepared as described.31

In addition, we used three FFPE surgery specimens of
prostate carcinomas from the University Medical Center
Schleswig-Holstein, Campus Lübeck (Lübeck, Germany),
to test a three-color FISH probe panel on tissue sections
Table 1 Clinical Patient Data

Patient
group

Patient
no.

Age
(years)

PreOp
PSA
(ng/mL)

Gleason
primary

Gleason
secondary

Gleason
sum

Su
ye

Non-
progressers

1 60.4 7.2 3 5 8 19
2 65.8 19.4 3 4 7 19
3 64.4 7.3 3 4 7 20
4 52.5 5.1 3 5 8 19
5 63.8 6 3 4 7 19
6 53.8 4.5 4 3 7 20

Progressers 7 61.2 11.1 3 4 7 19
8 60.4 10.2 3 4 7 20
9 65.8 15.7 3 4 7 20
10 64.4 10.9 4 3 7 20
11 68.6 14.3 4 3 7 20
12 75.2 5.5 3 4 7 20
13 60 24 4 3 7 20

Neg, negative; Pos, positive; PreOp, preoperative.
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(4 mm thick) to assess the feasibility of implementing this
test in routine pathological analysis.

The material for the current study has been coded, and an
exemption has been issued by the NIH Office of Human
Subjects Research for use of the de-identified data.

FISH Data

The cytospins were evaluated by FISH with CEPs for cen-
tromeres 8 and 10 and six locus-specific identifier probes for
the following genes: TBL1XR1 (3q26.23), CTTNBP2
(7q31.2), MYC (8q24.21), PTEN (10q23.1), MEN1 (11q13),
and PDGFB (22q13.1) (Abbott Molecular, Des Plaines, IL).
The probes were selected on the basis of previous aCGH
data,32 and each probe represented approximately 200 to
600 kb of genomic sequence centered on the gene of in-
terest; the probes were directly labeled with fluorophores.
The centromere probes, PTEN and MYC, were labeled in
SpectrumAqua or SpectrumGreen (Abbott Molecular).
CTTNBP2 and MEN1 were labeled in SpectrumRed,
whereas PDGFB and TBL1XR1 were labeled in Spec-
trumGold. The FISH probes were combined into two panels.
The panel for the first hybridization consisted of CEP10,
PTEN, CTTNBP2, and PDGFB. The panel for the second,
subsequent hybridization contained CEP8, MYC, MEN1,
and TBL1XR1. The samples were also evaluated for their
TMPRSS2-ERG fusion status with an ERG break-apart
probe10 in a third, subsequent hybridization. The ERG
probe hybridization was recorded in three-digit patterns for
each cell, with the first digit registering the number of
normal ERG alleles (red and green signals on top of each
other), the second digit referring to the number of telomeric
ERG probe signals (single green signals), and the third digit
representing the number of centromeric ERG probe signals
(single red signals). Therefore, a 200 pattern would be
indicative of a normal diploid status of ERG, whereas a 111
rgical
ar

Follow-up
duration
or time
to recur
(months)

Margin
status

Seminal
vesicle
involvement

Lymph node
involvement

Extracapsular
extension

94 72.16 Neg No Neg No
96 30.81 Neg No Neg No
00 78.18 Neg No Neg Yes
98 65.59 Neg No Neg No
95 63.16 Neg No Neg No
01 55.82 Neg No Neg No
96 5.03 Pos No Neg Yes
00 2.56 Neg No Neg No
00 3.72 Neg No Neg Yes
02 1.38 Pos Yes Neg Yes
03 9.11 Neg No Neg No
03 45.7 Neg No Pos No
03 1.84 Neg Yes Pos Yes
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or a 101 pattern would be indicative of a fusion of
TMPRSS2-ERG by insertion/translocation or deletion,
respectively.10

One cytospin per case was hybridized and evaluated with
the above mentioned three different probe sets using single-
cell FISH methods, as described previously.31 Detection of
the ERG break-apart probe was performed according to
Perner et al.10 In all 13 samples, all probes could be coun-
ted. This resulted in an eight-probe signal pattern plus a
three-digit TMPRSS2-ERG pattern for each cell analyzed,
with an average of 316 (range, 197 to 372) interphase nuclei
counted for each case. As previously described,31 for each
cell, a ploidy value (diploid, triploid, or tetraploid) was
assigned to each signal pattern on the basis of the assess-
ment of the pattern. A computer program developed to
assign gain and loss patterns by comparing signal counts to
the ploidy value59 was applied, and the patterns were sorted
according to their frequency and displayed in color charts
giving an overview of the clonal populations and the overall
heterogeneity observed in the tumors (Figure 1).31

The tissue sections (4 mm thick) were deparaffinized in
xylene, hydrated, and pretreated with 0.02% pepsin for 25 to
70 minutes. Slides were then washed in 1� phosphate-
buffered saline, dehydrated, air dried, and codenatured at
72�C for 5 minutes with a three-color probe panel consisting
ofMYC-TBL1XR1-PTEN. The probe panel was either labeled
in-house by nick translation using Dyomics 415-dUTP
(Dyomics, Jena, Germany) for MYC or Dyomics 505-dUTP
for TBL1XR1 and SpectrumOrange-dUTP (Abbott Molecu-
lar) for PTEN, or provided by Abbott Molecular in the
following color scheme: MYC in SpectrumAqua, PTEN in
SpectrumGreen, and TBL1XR1 in SpectrumGold. The slides
were detected with a 2-minute wash in 2� standard saline
citrate (SSC)/0.3% NP40 at 48�C, followed by 1 minute in
2� SSC/0.1% NP40 and 1 minute in 2� SSC, both at room
temperature. Slides were air dried and coverslipped, and
images were taken with a Leica DMRXAmicroscope (Leica,
Wetzlar, Germany) equipped with custom filters (Chroma,
Bellows Falls, VT) and a CoolSnap camera (Photometrics,
Tucson, AZ).

DNA Ploidy Measurements

Nuclear DNA ploidy status was assessed by image cytom-
etry using Feulgen-stained cytospins of dissociated cells
from all samples, except for case 10, because of insufficient
cell material. The staining procedure, internal standardiza-
tion, and cell selection criteria were based on published
methods.60 At least 7803 particles per sample (mean,
24,000; range, 7803 to 72,101) were detected automatically
using the ICM imaging system (Ahrens ICM Cytometry
System; Mebtechnische Beratung, Bargteheide/Hamburg,
Germany). At least 603 cells (mean, 2953; range, 603 to
8422) per sample were interactively selected in the ICM cell
gallery and quantitatively measured for their DNA content.
All DNA values were expressed in relation to the
2674
corresponding staining controls (lymphocytes), which were
given the value 2c, denoting normal diploid DNA content.
The DNA profiles were classified as previously described.60

Samples were assessed as euploid when <5% of cells
showed DNA values >4.5c. Aneuploidy was defined as
>5% of cells presenting with DNA values exceeding the
tetraploid region (>4.5c).

aCGH Data

The previously acquired aCGH data for regions containing
the genes used in our FISH analysis were extracted from the
existing data set.61 The aCGH-based copy number calls for
all 13 cases and 6 genes were recorded and aligned with the
corresponding FISH calls for the purpose of comparing by
correlation analysis of the copy number estimates obtained
by aCGH and by FISH.

Analysis of Tumor Heterogeneity

We refer to the ordered list of count values for each probe as
a signal count pattern. To explore the possibility that tumors
with progression are more or less heterogeneous than tu-
mors without progression, we compared three measures of
diversity in the distribution of FISH signal count patterns: i)
instability index, ii) Shannon index, and iii) Simpson
index.62 The indices were computed for each sample and
were then compared between the progresser and non-
progresser distributions by either comparing the mean or
using a Wilcoxon signed-rank test. The instability index is
defined as 100 times the number of cell count patterns
divided by the number of cells. To define the other two
indices, let pi be the probability of the ith cell count pattern.
Then, the Shannon index, which is commonly used in in-
formation theory (alias entropy), is as follows:

�
X

pilog2ðpiÞ: ð1Þ

The Simpson index, which is commonly used in popu-
lation genetics, is Spi

2.

Estimation of Empirical Significance of a Set of Gene
Gains/Losses to Distinguish Non-Progressers versus
Progressers

To assign an empirical P value for sets of gains and losses
that may distinguish non-progressers versus progressers,
we used simulation. Permutation tests were performed in
which a status of gain/loss/neither for each of the six genes
(TBL1XR1, CTTNBP2, MYC, PTEN, MEN1, and PDGFB)
was assigned at random to 13 samples, with the progresser/
non-progresser status permuted. In each replicate, the num-
ber of samples with a gain or loss of each gene was fixed to
match the observed data. In this context, a classifier is a
nonempty set of gene gains and losses from the six genes that
predicts whether a sample comes from a progresser, if at least
one of the gains and losses is present, or from a non-
ajp.amjpathol.org - The American Journal of Pathology
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progresser, if at least one of the specified gains and losses is
not present. Each gene may be specified as gained, specified
as lost, or not used in the classifier. Therefore, there are 729
possible classifiers (36 e 1). For each replicate r, we
considered all possible classifiers. The test statistic A (clas-
sifier, r) assigned to a classifier was the arithmetic mean of
sensitivity and specificity. For each of the 10,000 replicates r,
the test statistic S(r) was the maximum test statistic A among
all possible classifiers for fixed r. The empirical P value
assigned to a classifier of the observed data was the fraction
of replicates r for which the S(r) is greater than or equal to A
(classifier, observed data).

Modeling Tumor Progression and Analysis of Node
Depth

For each of the 13 tumors, we modeled the progression of
copy number changes using FISHtrees software,58 which
infers phylogenetic trees describing progression among the
observed cell types as distinguished by their probe copy
numbers. A tree is inferred from the data for each tumor to
heuristically seek to minimize the total number of copy
number changes across the tree. In this analysis, we used the
six gene probes and we used the break-apart probe to assess
the copy number of ERG. We did not use the fusion status
or the centromere probes. For each tumor, FISHtrees
generated a tree model in which the normal state (2, 2, 2, 2,
2, 2, 2) is at the root of the inferred tree and each edge
moving away from the root to a new node corresponds to a
change in copy number of one gene. For each node, we also
stored the number of cells observed to match the seven-
component signal count pattern for that node.

The number of steps away from the root is usually called
the depth of a node. Our prior work on cervical cancer
progression trees58 showed that the distribution of cells by
depths provides a measure of tree topology that is predictive
of progression potential. To test whether this characteriza-
tion of tree topology is similarly predictive of prostate
cancer progression, we performed an analogous test. We
computed the percentages of cells represented by nodes at
each depth in the tree, as described previously.58 We used
percentages of cells at each depth rather than total cells to
normalize for differing numbers of cells analyzed for
different tumors. We visualized the distribution of the
depths of cells in progressers versus non-progressers by a
bar graph. We then tested for significance of the difference
between average depths for non-progressers versus pro-
gressers by a Wilcoxon signed-rank test. Because we hy-
pothesized that the trees derived from progresser samples
would have greater average depth, the Wilcoxon P values
were one sided.

Results

In a previously published aCGH study,32 we identified loci
that were differentially gained or lost in primary prostate
The American Journal of Pathology - ajp.amjpathol.org
cancers from patients with non-progressive or progressive
disease after RP. A subset of the genes was validated by
TaqMan analysis.32 On the basis of these results and the
feasibility of probe design, FISH probes centered on the
genes of interest were selected. We hybridized the selected
FISH probes targeting the six most promising markers [ie,
TBL1XR1 (3q26.23), CTTNBP2 (7q31.2), MYC (8q24.21),
PTEN (10q23.1), MEN1 (11q13), and PDGFB (22q13.1)],
together with centromere probes for chromosomes 8 and 10
and an ERG break-apart probe10 for determining whether
the fusion status of TMPRSS2-ERG could serve as an
additional progression marker. The probes were sequentially
hybridized to interphase cells prepared as cytospins from 13
primary prostate carcinomas (six non-progressers and seven
progressers).63 Signal patterns were counted in 197 to 372
nuclei per sample (average, 316 nuclei), excluding nuclei
with two signals for all probes and a 200 pattern (indicating
two normal alleles) for the ERG break-apart probe.
Clinical Features

Pertinent clinical parameters are summarized in Table 1. All
patients were at high risk of recurrence by the D’Amico
Risk Classification.63 No clinical variables were found to be
confounding.61
Chromosomal Instability and Clonal Patterns

The FISH probe panels were hybridized sequentially to in-
dividual nuclei of the same specimen. Repeated hybridiza-
tion and relocation of the cells afforded us the possibility of
enumerating clonal aberration patterns on a cell-to-cell basis
for all six gene probes, the two centromere probes, and the
ERG break-apart probe. The FISH signal patterns were
assigned to two groups: patterns for which each cell fitting
the pattern had an identical count for all signals, termed
signal pattern clones, and patterns for which each cell fitting
the pattern matched each other cell in the direction of
change (gain, loss, or normal) of each signal but not
necessarily in the exact counts, termed imbalance clones.
For example, in case 10, the major imbalance clone is gain
of TBL1XR1, gain of CTTNBP2, normal for MYC, loss of
PTEN, normal for MEN1, normal for PDGFB, and break-
apart probe pattern 101 (case 10) (Figure 1). To visualize
and compare major imbalance clones in prostate carcinomas
with or without progressive disease, each cell of the lesion
was displayed according to its ERG break-apart patterns and
its gain, loss, or unchanged (normal) status, with the gene
probes sorted according to their chromosomal location from
the top to the bottom of the chart and with the patterns
observed displayed from left to right sorted by frequency
(Figure 1). In addition, the frequency of gained and lost
status for each of the gene loci and each ERG break-apart
pattern was calculated in percentages of the total cell pop-
ulation, the average ploidy of the lesion, and the average
2675
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Figure 1 Summaryof imbalance clones in six cases of primary prostate carcinomawithout progression (cases 1 to 6;A) and seven caseswith progression (cases 7 to
13;B). Green, gains; red, losses; blue, unchanged. Theorganization of the graphs is the same for all cases and is explained for case 1 in detail from left to right. The Locus
column shows the chromosome arm. Each vertical line separates the most common imbalance clones. The row above the imbalance clones displays the percentages at
whichthe cloneswere found. For example, themost frequent clone in case1 comprised19.4%of the cellswith anERGbreak-apart fusionpatternof 111, indicating fusion
by insertion, but exhibited no other gains or losses. The second most frequent clone comprised 9.0% of the cells and had the same ERG pattern 111 but showed, in
addition to that change, a gain ofMEN1. Two clones that each comprised 3.2% of the tumor cell population followed. Both showed also the 111 pattern for fusion, but
oneof themhad a loss forPTEN and theother displayed a loss forMEN1. TheMarker column shows thegene/probe name. TheGain column shows that 25%of the cells had
a gain ofMEN1. None of the gains and losses comprised>30%of the cell population in case 1. The Average sig. no. column shows that the average signal count forMEN1
in the entirepopulationwas 2.2. The percentage of gainsor losses in>30%of the cells is in red (loss) andgreen (gain), respectively, highlighting (eg,MEN1gain in case
2). Two hundred seventy-eight nuclei were counted for case 1. Average ploidy values were calculated from the ploidy values assigned to each nucleus by signal patterns
(as described inMaterials and Methods). The numerical ERG break-apart patterns (as described inMaterials and Methods) are displayed in the bottom row. Fusion events
are yellow, and patterns indicating normal ERG alleles are light blue. The four most frequently observed ERG break-apart patterns are displayed at the bottom right.
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Figure 1 (continued).
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Table 2 Summary of Results for Primary Prostate Carcinomas with and without Progressive Disease

Patient group
Case
no.

Total no.
of cells
counted

Total no.
of signal
patterns

Instability
index (no.
of patterns
� 100/no.
of cells)

% Diploid
cells
(according
to FISH
signals)

DNA
cytometry
measurement

% Cells
with
TMPRSS2 -
ERG fusion Major clonal imbalance patterns

Major clonal signal
patternsPloidy

Stem
line

Non-
progressers

1 278 139 50 100.0 Euploid 1.92 80.2 19% Fusion,

9% Fusion þ MEN1 gain
19% 22222222111

2 382 226 59.2 70.9 Euploid 1.69 84.3 13% Fusion þ MEN1 gain,

11% Fusion
7% 22222232011

4% 22222232101
2% 22222242011

3 197 85 43.1 100.0 Euploid 1.96 23.4 12% Fusion,

11% No fusion þ MEN1 loss,
8% No fusion þ MEN1 gain

12% 22222222101

4 336 208 61.9 67.0 Euploid 2 63.7 11% Fusion,

5% No fusion þ MEN1 gain,
4% Fusion þ MEN1 gain

7% 22222222101

3% 44444444202

5 381 159 41.7 92.1 Euploid 2.01 80.8 28% Fusion þ CEP8 loss,

4% Fusion þ CEP8 loss þ MEN1 gain
28% 12222222111

6 257 139 54.1 77.8 Euploid 2.02 60.7 16% Fusion þ CEP8 loss,

5% No fusion þ CTTNBP2 loss,
4% Fusion þ CEP8 loss þ CTTNBP2
gain

11% 12222222101

5% 24444444202

Average 305.2 159.3 51.7 84.6 NA 1.93 65.5 Average size of major imbalance

clone Z 16.5%

Average size of

major signal

pattern clone Z
14.0%

Progressers 7 330 212 64.2 88.7 Euploid 2 5.2 24% ERG gain þ CEP8 gain þ
MYC (alias c-myc) gain, 6% ERG
gain þ CEP8 gain þ MYC gain þ
MEN1 gain

9% 42225222300

4% 32225222300
3% 42224222300

8 372 96 25.8 97.6 Euploid 2.01 53.5 30% Fusion,

14% No fusion þ CEP8 loss,
9% No fusion þ PDGFB loss

30% 22222222111

9 340 158 46.5 95.3 Euploid 2.01 84.1 15% Fusion,

11% Fusion þ PTEN loss,
7% Fusion þ CEP10 gain þ PTEN loss

15% 22222222111

10 278 157 56.5 96.4 ND ND 73.7 24% Fusion þ TBL1XR1 gain þ
CTTNBP2 gain þ PTEN loss, 4%
Fusion þ CTTNBP2 gain þ PTEN
loss

23% 22332022101

11 287 161 56.1 94.8 Euploid 1.96 78.3 22% Fusion þ CEP8 loss þ
CTTNBP2 loss þ PTEN loss,

3% No fusion þ CEP8 loss þ
CTTNBP2 loss þ PTEN loss

11% 12212122111

11% 12212122101

12 365 87 23.8 99.5 Euploid 1.96 90.7 44% Fusion þ PTEN loss,
16% Fusion

44% 22222022111

13 306 164 53.6 99.7 Euploid 1.96 71.0 13% Fusion þ TBL1XR1 gain,
6% Fusion þ TBL1XR1 gain þ
MEN1 gain

12% 22322222101

Average 325.4 147.9 46.6 96.0 NA 1.98 65.2 Average size of major imbalance

clone Z 24.6%

Average size of

major signal

pattern clone Z
20.6%

Average for all cases 316.1 153.2 49 90.8 NA NA 65.4 Average size of major clone Z
20.8%

Average size of

major signal

pattern clone Z
17.5%

NA, not applicable; ND, not determined.
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signal number for each gene locus. The results for all 13
cases are displayed in Figure 1.

The most frequent imbalance clone in each tumor
comprised, on average, 20.8% of the cell population, with a
2678
range of 11% to 44% (Figure 1 and Table 2). Interestingly,
the average size of the major imbalance clone in the pro-
gressers was 24.6% (average size for major signal pattern
clone, 20.6%), whereas the average size in non-progressers
ajp.amjpathol.org - The American Journal of Pathology
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Table 3 Overview of Gains and Losses Observed in >30% of Tumor Cells of the Six Non-Progressers and Seven Progressers

Patient group Case no. CEP8 CEP10 TBL1XR1 CTTNBP2 MYC (alias c-myc) PTEN MEN1 PDGFB

Non-progressers 1 d d d d d d d d
2 d d d d d d Gain d
3 d d d d d d d d
4 d d d d d d d d
5 Loss d d d d d d d
6 Loss d d d d d d d

Progressers 7* Gain d d d Gain d d d
8 Loss d d d d d d d
9* d d d d d Loss d d
10* d d Gain Gain d Loss d d
11* Loss d d Loss d Loss d d
12* d d d d d Loss d d
13* d d Gain d d d Gain d

d, neither a gain nor a loss occurs.
*Cases were detected by a three-probe panel consisting of FISH probes for PTEN, MYC, and TBL1XR1.

Genetic Markers for Prostate Cancer
was only 16.5% (14% for major signal pattern clone),
suggesting that progressers have a higher degree of selection
for a specific clone. However, there were only slight dif-
ferences in the average instability index measured as the
number of FISH signal patterns per 100 cells (46.6 versus
51.7) and the average percentage cells with fusion for
TMPRSS2-ERG (65.2% versus 65.5%) between samples
from patients with or without progression (Table 2). Wil-
coxon tests of the instability index, Shannon index, and
Simpson index comparing non-progressers with progressers
showed no statistically significant differences in these mea-
sures of heterogeneity. Also, nuclear ploidy measurements
could not discern between non-progressers and progressers.

The major clones of all lesions showed fusion events of
TMPRSS2-ERG, except for one progresser, which was the
only case that displayed gains ofMYC and CEP8, indicating a
gain of the entire chromosome 8 (case 7) (Figure 1). This was
also the only case with gains of a normal ERG allele; there-
fore, it might follow a different pathway to progressive dis-
ease. Four progressers, cases 9, 10, 11, and 12 (Figure 1),
revealed major clones with PTEN loss, which was not
observed in any of the non-progressers. In addition, case 9 had
a major clone with only a fusion event for TMPRSS2-ERG.
The remaining two progressers had major clones with either
only a fusion event (case 8) (Figure 1) or a fusion event with a
TBL1RX1 gain (case 13) (Figure 1), respectively. The aber-
rations in the major clones of non-progressing tumors were
fusion events only (cases 1, 3, and 4) (Figure 1), a fusion event
with a MEN1 gain (case 2) (Figure 1), and TMPRSS2-ERG
fusion events with a CEP8 loss (cases 5 and 6) (Figure 1).
Table 3 shows that overall more chromosomal gains and
losses were found in carcinomas from the progresser group,
whereas carcinomas of the non-progressing patients showed
few changes, involving the loss of CEP8 and the gain of
MEN1. Specifically, three gains/losses in the non-progresser
group and 13 gains/losses in the progresser group are listed
(Table 3). To evaluate whether the imbalance in the distri-
bution is statistically significant, we permuted the entries in (a
The American Journal of Pathology - ajp.amjpathol.org
copy of) each column 10,000 times (Table 3). One can obtain
an empirical one-sided P value by asking what proportion of
the 10,000 scrambled replicates has, at most, three gains/
losses in the non-progresser group and correspondingly at
least 13 gains/losses in the progresser group. By using this
permutation test, we obtained PZ 0.0143.

TMPRSS2-ERG Fusion

In 12 of 13 lesions, the break-apart probe indicates clonal
patterns with a TMPRSS2-ERG fusion. There was no sig-
nificant difference in the average percentage of cells with
fusion (65.2% versus 65.5%) between samples from patients
with or without progression (Table 2). Most cases exhibited
tumor cell populations that were heterogeneous for the ERG
break-apart probe, often including a population with two
normal alleles for ERG (pattern 200) (Figure 1). However, 6
of the 13 cases showed a specific fusion pattern in >60% of
their tumor cell population, indicating that in those tumors
either this was an early event in tumorigenesis or there was a
strong selection for this particular pattern. There was no
significant difference in the distribution of fusions by either
insertion or translocation (pattern 111) and deletion (pattern
101) in the progressers and the non-progressers. Two non-
progressers, but none of the progressers, revealed clonal
cell populations with a double deletion of the sequences
between ERG and TMPRSS2 (cases 4 and 6) (Figure 1).
However, the double deletion pattern 202 was observed in
tetraploid cells, indicating a duplication of a diploid cell
with the single deletion pattern 101. There was one pro-
gresser with a gain of a normal ERG allele (case 7). This
case was also the only case with a gain of MYC.

Various studies have suggested that ERG-TMPRSS2 fu-
sions are early events in prostate cancer development.20,64,65

In our samples, there were five cases (cases 1, 5, 9, 10, and
13) (Figure 1) that revealed clones with the same ERG break-
apart pattern but different gain and loss patterns for the other
genes analyzed, indicating that the TMPRSS2-ERG fusion
2679
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Figure 3 Specific gains and losses observed in non-progressive and
progressive prostate cancer disease. CEP8 and CTTNBP2 were gained and
lost. The thicknesses of the arrows reflect the percentage of change from
non-progressive to progressive disease. The increase of lesions with a loss
of PTEN is the most pronounced.

Figure 2 Average gain and loss frequencies for all of the gene markers
and two centromere probes observed in prostate carcinoma cells of patients
with and without progression. Percentages of cells with gains are shown
above the 0% line and with losses below the 0% line.

Heselmeyer-Haddad et al
happened as the first event, followed by specific chromo-
somal gains and losses. However, four cases (cases 2, 7, 8,
and 11) (Figure 1) showed clones with the same gain and loss
patterns, but different ERG break-apart patterns, which might
indicate that the cells first acquired a specific chromosomal
imbalance, and that the TMPRSS2-ERG fusion happened as a
later event. In the remaining four cases (cases 3, 4, 6, and 12)
(Figure 1), there were different ERG break-apart patterns
with different gain and loss patterns, most likely indicating a
parallel development of different clones. This is surprising
because it appeared more likely that within one tumor focus,
fusion status should be clonal, although interfocal heteroge-
neity in the TMPRSS2-ERG fusions of multifocal prostate
tumors had been reported.25 The 202 pattern in case 6 can be
explained with a tetraploidization of the genome that resulted
in a duplication of the 101 pattern seen in the major clone of
this case.

Correlation of aCGH and FISH

The correlation between gains and losses called by aCGH and
FISH was 83.3%61 when using a threshold of >30% of the
cells with gain or loss for FISH. Most of the discrepant calls
are due to CTTNBP2 gains called by aCGH but not seen by
FISH, andMEN1 gains seen by FISH but not called by aCGH.

DNA Ploidy Measurement Results

Image cytometry measuring the nuclear DNA content and
determining the ploidy status did not reveal any aneuploid
lesions among the six non-progresser and six of the seven
progresser cases (one case did not have adequate material to
be measured) (Table 2). All cases had diploid stem lines. A
few cases showed small fractions of proliferating and/or
tetraploid cells, which was in concordance with our FISH
signal pattern observations (Table 2). In summary, all cases
showed euploid DNA histograms indicating that DNA ploidy
2680
measurements were not able to discern non-progressers from
progressers in our study.

Performance of the FISH Probes as Progression Markers

Figures 2 and 3 and Table 3 give a summary of the overall
performance of the six gene markers and the two centromere
probes tested with regard to differential gain and loss pat-
terns in progressive and non-progressive prostate carci-
nomas. Figure 2 shows the average gain and loss
frequencies for all of the gene markers and two centromere
probes observed in all prostate carcinoma cells analyzed,
grouped by patients with or without progression. The most
frequent change observed affects PTEN in the progressive
disease group with a loss in>40% of the cells, comparedwith
only 11% of the non-progresser group. The progresser group
showed, on average, a 10% to 15% higher percentage of cells
with TBLX1R1, CTTNBP2, or MYC gain compared with the
non-progressers. However, MEN1 and PDGFB showed
similar percentages for progressers and non-progressers. In
fact,MEN1 gain was more frequently observed in the cells of
non-progressing carcinomas.
When using a threshold of >30% of the cells showing the

aberration, lesions from patients with progressive disease had
an average of 1.9 gains/losses for the probes tested, compared
with a substantially lower average of 0.5 for tumors from
patients without progression (Figure 3). By using the same
threshold, the loss of PTEN was the most frequent aberration
in the progressers (4/7 Z 57%), and was not observed in
non-progressers, confirming its potential as a marker for
aggressive disease. TBL1XR1 was gained in two of the seven
progressers (29%), whereas none of the non-progressers
showed changes in the copy number of this gene. One pro-
gresser had a gain of CTTNBP2 and another progresser had a
loss of this gene, whereas none of the non-progressers showed
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 FISH on tissue sections with a prostate cancerespecific FISH probe panel. A: Normal prostate; most cells reveal two signals for the three probes
[MYC (alias c-myc) in red, TBLX1R1 in green, and PTEN in yellow]. Some cells are truncated because of sectioning. B: Prostate cancer; four copies for the probes
MYC (red signals) and TBL1XR1 (green signals) are present in most cells; again, cells are often truncated because of sectioning. We did not observe signals for
the PTEN-specific probe, consistent with a biallelic deletion of this gene. C: Representative area of H&E-stained section of this cancer.

Figure 5 Distribution of cells across different levels of tumor pro-
gression trees for non-progresser (light gray bars) and progresser (dark gray
bars) cases.

Genetic Markers for Prostate Cancer
CTTNBP2 copy number changes. One progresser revealed
CEP8 and MYC gains, indicative of a chromosome 8 gain.
The gain ofMYCwas not observed in non-progressers.MEN1
was gained in one progresser and one non-progresser lesion,
whereas PDGFB was not changed in any of the lesions,
indicating that these two genes are not differentially gained or
lost in progressers. A probe set consisting of PTEN,MYC, and
TBL1XR1 would have detected six of the seven progressers
analyzed, which is equivalent to a test sensitivity of 86%
(Table 3). The one progresser case that would not have been
detected (case 8) had a major clone (30% of the cell popula-
tion) with a TMPRSS2-ERG fusion pattern of 111 and two
minor clones, one comprising 12% of the cell population with
an unusual ERG loss and a loss of CEP8 indicating an 8p loss
and another clone comprising approximately 10% of the cell
population revealing a rare loss ofPDGFB on a normal diploid
background without a TMPRSS2-ERG fusion (Figure 3). All
non-progressers would have been negative for a test with a
probe set of PTEN, MYC, and TBL1XR1 (100% specificity),
indicating that the combination of these three markers might
have potential to predict progression in prostate carcinomas.
By using the permutation test method described above, the
combination of 86% sensitivity and 100% specificity has an
empirical P value of 0.013.

Applying the MYC-TBL1XR1-PTEN Probe Panel to Tissue
Sections of Prostate Cancers

We tested whether the three-color FISH probe panel that
was determined to have the highest combined sensitivity
and specificity (namely, MYC-TBL1XR1-PTEN) can be
easily applied to routine tissue sections of FFPE material. We
successfully hybridized three different prostate cancer spec-
imens. The hybridizaton of one of the prostate cancer cases
and the H&E stain for the tumor is shown in Figure 4. The
tumor cells did not show any PTEN signal, indicative of a
The American Journal of Pathology - ajp.amjpathol.org
biallelic loss of PTEN (Figure 4B), whereas normal ducts in
the neighboring tissue revealed a normal signal pattern with
mostly two signals per nucleus and probe. Signal counts of
fewer than two are most likely due to the truncation of cells
(Figure 4A). TBL1XR1 and MYC revealed mostly four sig-
nals per tumor nucleus, indicating a possible gain for both
markers in the tumor cells (Figure 4B). We also observed
truncation artifacts due to sectioning.
Tree Models of Tumor Progression Show a Different
Pattern of Changes in Non-Progressers versus
Progressers

Although, in this study, the instability indexes of the prostate
carcinomas with or without progression after RP are similar,
the frequency of genomic imbalances is substantially higher
in the progresser group, with 1.9 gains or losses per case
versus 0.5 gains or losses in the non-progressers. To visualize
the pattern of progression in each case, we constructed tree
models of progression using FISHtrees software, which in-
fers phylogenetic trees describing likely evolution of the set
2681
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of observed signal counts within each tumor from an initially
diploid root cell to heuristically minimize total copy number
changes across the tree (Supplemental Figures S1eS13).58

To evaluate whether there were statistically significant dif-
ferences between the inferred phylogenetic trees of non-
progressers versus progressers, the cell distribution across
tree levels was calculated (Figure 5). The analysis showed
that in the non-progressers, 70% of all cells were distributed
within the first three tree levels, which was true for only 44%
of the cells of the lesions that progressed. This observation
indicates that cells of lesions that have a higher propensity to
progress to advanced disease, on average, deviate more from
the normal diploid status compared with cells from non-
progressing lesions. This observation can be formalized
statistically by computing weighted average depth of the
nodes up to some level L for the six non-progressers and the
seven progressers. The weighted average depths for
L Z 5,.12 for the two sets (non-progressers versus pro-
gressers) were compared by a Wilcoxon signed-rank test,
which shows that the weighted average depth in the pro-
gressers is statistically significantly greater (Supplemental
Table S1). For example, for L Z 10, the P value of the test
is 0.018. The node depth is the distance away from the normal
signal count pattern (2,..,2) expressed in terms of the count
of copy number changes. Thus, the cells in the progresser
samples have in general a trend toward more total chromo-
somal changes. This trend is not captured by previously
proposed measures of diversity (Shannon or Simpson
index).62
Discussion

Men with slowly progressing prostate cancers could be
treated with active surveillance approaches instead of im-
mediate, more aggressive treatment, including surgery, which
can have considerable adverse effects.66 This subset of pa-
tients will become larger as populations age and more tumors
are detected early by screening efforts. Distinguishing pa-
tients with aggressive or indolent prostate carcinomas would
help in designing risk-adapted neoadjuvant and adjuvant
treatments.

Herein, we used single-cell genetic analysis of copy num-
ber changes and chromosomal translocations on the basis of
interphase cytogenetics (FISH) to understand genome dy-
namics in prostate tumors from patients with or without pro-
gression after RP. This allowed us to evaluate a set of genetic
markers for their usefulness to predict progression, identify
pathways of carcinogenesis, and examine patterns of genomic
imbalances and clonal evolution. We used three FISH probe
panels targeting six genes identified by aCGH to be differ-
entially gained and lost in tumors that progressed compared
with tumors that did not progress. In addition, the TMPRSS2-
ERG fusion status was assessed in the same cells with a FISH
ERG break-apart probe, and two centromere probes were
hybridized as control probes. The sequential hybridization of
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these panels to intact nuclei prepared from prostate carci-
nomas enabled us to enumerate all probe counts in multiple
individual cells.
The non-progressing prostate carcinomas revealed a

slightly higher average chromosomal instability index,
calculated as the number of distinct signal patterns per 100
cells, with an average of 51.7 patterns (range, 41.7 to 59.2),
compared with the progressing lesions, with an average of
46.6 patterns (range, 23.8 to 64.2). The range in the non-
progressing lesions was narrower because two progresser
lesions showed substantially lower indices (23.8 and 25.8)
than the rest of the group (46.5 to 64.2), reflecting the fact that
these two lesions had large populations of a major stable
clone comprising 44% and 30% of the total tumor population.
We have previously observed a higher average chromosomal
instability index in a multicolor FISH study comparing breast
ductal carcinoma in situ (DCIS) to synchronous invasive
ductal carcinomas (IDCs). We observed 62.3 patterns (range,
14.5 to 93.3) in the DCIS and 70.6 patterns (range, 49.7 to
98.0) in the IDC.31 In the breast lesions, we never observed
any signal pattern clone comprising >22% of the tumor cell
population, with 7 of 26 cases showing no stable signal
pattern clone (ie, <4% of the cells have the same signal
pattern), whereas in the prostate carcinomas, 4 of 13 cases
showed signal pattern clones comprising >22% of the cells,
with a range from 7% to 44% cells (average size, 17.5%) for
the major signal pattern clones in all cases.
Although the higher instability indices and smaller clone

populations observed in the breast tumors could be due to
the fact that a different set of genes was analyzed, there are
indications of generally higher intratumor heterogeneity in
breast tumors, especially because certain breast tumors
showed major clones with aberrations in all eight breast
cancerespecific genes assessed. None of the prostate can-
cers showed major clones with more than three aberrations
in the six genes assessed for prostate cancer progression,
which might be indicative of lower intratumor heterogeneity
in prostate tumors. We are currently analyzing cervical
cancers and high-grade cervical intraepithelial neoplasias
with eight gene probes specific for cervical cancer and have
observed much lower instability indices in these tumors
compared with the breast tumors and prostate tumors (data
not shown). Taken together, these observations might
indicate that there are major differences in tumor hetero-
geneity and clonal development between different tumor
entities.
Although the instability index values between the prostate

carcinomas with or without progression are similar, the
frequency of chromosomal gains and losses is substantially
higher in the progresser group, with 1.9 gains or losses per
case versus 0.5 gains or losses in the non-progressers. By
using the same threshold of >30% of the tumor cell pop-
ulation exhibiting the aberration, breast tumors showed
much higher gain and loss frequencies, with an average of
3.5 gains and losses per DCIS case and 4.6 gains and losses
per IDC case.31 The increase of aberrations in the more
ajp.amjpathol.org - The American Journal of Pathology
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advanced disease stages shows that, in both tumor entities,
additional aberrations are acquired during progression of the
disease.

Of the 13 prostate cancers investigated, 12 hadmajor clonal
cell populations with a TMPRSS2-ERG fusion and there was
no significant difference in the average number of cells with a
TMPRSS2-ERG fusion between prostate carcinoma cases
with or without progression after RP. TMPRSS2-ERG fusion
status could, therefore, not be used to discern progressers from
non-progressers. This observation is in concordance with
previous publications,16,18 and our results need to be inter-
preted with caution for ERG-negative cases. One progresser
lesion (case 7) did not have any fusion event, but instead
overexpressed ERG by acquiring extra copies of a normal
ERG allele. This case was also the only case with CEP8 and
MYC gains, indicating that this cancer followed a different
pathway. Interestingly, Toubaji et al67 observed that increased
gene copy number of ERG, but not TMPRSS2-ERG fusion,
predicts outcome in prostate cancers. They found that the
presence of extra copies of the ERG gene is significantly
associated with recurrence, which is consistent with the
observation that our only case with ERG gain (case 7) was
actually a lesion from a patient who progressed.

Two non-progressers, but none of the progressers, re-
vealed clonal cell populations with a double deletion of the
sequences between ERG and TMPRSS2 (cases 4 and 6)
(Figure 1), an ERG pattern that was reported to correlate
with worse outcome.15 In our cases, the double-deletion
pattern 202 happened in tetraploid cells, so the dosage ef-
fect in these cells is most likely similar to pattern 101 in
diploid cells.

The most frequent aberration that we observed in pros-
tate carcinomas that progressed was the loss of PTEN
(Figure 3). Four of seven progressers had cell populations
with >30% showing this loss, whereas none of the
nonrecurrent cases reached this threshold. Loss of PTEN
has been frequently shown to be associated with tumor
progression, tumor aggressiveness, and disease recur-
rence68,69 and appears to be a promising marker to
distinguish between progressing and non-progressing
prostate carcinomas.32,70 Interestingly, Leinonen et al38

observed that the loss of PTEN expression was associated
with shorter progression-free survival in ERG-positive, but
not in ERG-negative, cases. This is consistent with our
findings, because all our cases with PTEN loss were ERG
positive and progressers. Other gene markers that showed
differential gain and loss patterns between progressers and
non-progressers were TBL1XR1 on 3q26, CTTNBP2 on
7q31, and MYC on 8q24; however, this occurred to a much
lesser degree than PTEN (Figure 3). Two of the markers,
MEN1 on 11q13 and PDGFB on 22q13, did not show any
differential gain and loss between progressers and non-
progressers in our FISH analysis. MEN1 was gained in
one non-progresser and one progresser, whereas none of the
lesions showed PDGFB aberrations in >30% of the tumor
cell population (Figure 3).
The American Journal of Pathology - ajp.amjpathol.org
Herein, a probe set consisting of PTEN, MYC, and
TBL1XR1 detected six of the seven progressers (86%
sensitivity). The only progresser case that would not have
been detected had a major clone with a TMPRSS2-ERG
fusion pattern of 111 only, so additional markers might
be needed to identify similar cases. However, none of
these three genomic markers would have been positive
for non-progressers, which is equivalent to a test speci-
ficity of 100%. Therefore, the combination of these three
markers shows potential to predict progression in prostate
carcinomas with high specificity and sensitivity. We
successfully hybridized this probe panel on tissue sec-
tions of prostate cancers and detected, in one of the
cancer specimens tested, a biallelic deletion of PTEN (ie,
no signal for PTEN ) and possible gains of the other two
markers. This demonstration of the probe panel on
prostate cancer tissue sections indicates that the proposed
test is feasible and can be useful in a routine pathological
setting. We plan to evaluate this probe panel in a larger
study to further explore the prospect for a single-cell
FISH test for the identification of patients with prostate
cancer predicted to have a poor prognosis after RP and,
thus, candidates for adjuvant therapy.
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