33 research outputs found

    TGFβ Signaling and Cardiovascular Diseases

    Get PDF
    Transforming growth factor β (TGFβ) family members are involved in a wide range of diverse functions and play key roles in embryogenesis, development and tissue homeostasis. Perturbation of TGFβ signaling may lead to vascular and other diseases. In vitro studies have provided evidence that TGFβ family members have a wide range of diverse effects on vascular cells, which are highly dependent on cellular context. Consistent with these observations genetic studies in mice and humans showed that TGFβ family members have ambiguous effects on the function of the cardiovascular system. In this review we discuss the recent advances on TGFβ signaling in (cardio)vascular diseases, and describe the value of TGFβ signaling as both a disease marker and therapeutic target for (cardio)vascular diseases

    BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β3 expression

    Get PDF
    BACKGROUND The transforming growth factor (TGF)-β superfamily comprises cytokines such as TGF-β and Bone Morphogenetic Proteins (BMPs), which have a critical role in a multitude of biological processes. In breast cancer, high levels of TGF-β are associated with poor outcome, whereas inhibition of TGF-β-signaling reduces metastasis. In contrast, BMP-7 inhibits bone metastasis of breast cancer cells. METHODS In this study, we investigated the effect of BMP-7 on TGF-β-induced invasion in a 3 dimensional invasion assay. RESULTS BMP-7 inhibited TGF-β-induced invasion of the metastatic breast cancer cell line MCF10CA1a, but not of its premalignant precursor MCF10AT in a spheroid invasion model. The inhibitory effect appears to be specific for BMP-7, as its closest homolog, BMP-6, did not alter the invasion of MCF10CA1a spheroids. To elucidate the mechanism by which BMP-7 inhibits TGF-β-induced invasion, we analyzed invasion-related genes. BMP-7 inhibited TGF-β-induced expression of integrin α(v)β(3) in the spheroids. Moreover, targeting of integrins by a chemical inhibitor or knockdown of integrin β(3) negatively affected TGF-β-induced invasion. On the other hand, overexpression of integrin β(3) counteracted the inhibitory effect of BMP7 on TGF-β-induced invasion. CONCLUSION Thus, BMP-7 may exert anti-invasive actions by inhibiting TGF-β-induced expression of integrin β(3).Prostatic carcinom

    Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis

    Get PDF
    Members of the transforming growth factor β (TGF-β) family have been genetically linked to vascular formation during embryogenesis. However, contradictory studies about the role of TGF-β and other family members with reported vascular functions, such as bone morphogenetic protein (BMP) 9, in physiological and pathological angiogenesis make the need for mechanistic studies apparent. We demonstrate, by genetic and pharmacological means, that the TGF-β and BMP9 receptor activin receptor-like kinase (ALK) 1 represents a new therapeutic target for tumor angiogenesis. Diminution of ALK1 gene dosage or systemic treatment with the ALK1-Fc fusion protein RAP-041 retarded tumor growth and progression by inhibition of angiogenesis in a transgenic mouse model of multistep tumorigenesis. Furthermore, RAP-041 significantly impaired the in vitro and in vivo angiogenic response toward vascular endothelial growth factor A and basic fibroblast growth factor. In seeking the mechanism for the observed effects, we uncovered an unexpected signaling synergy between TGF-β and BMP9, through which the combined action of the two factors augmented the endothelial cell response to angiogenic stimuli. We delineate a decisive role for signaling by TGF-β family members in tumor angiogenesis and offer mechanistic insight for the forthcoming clinical development of drugs blocking ALK1 in oncology

    The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system

    Full text link
    Transforming growth factor-beta (TGF-beta) has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stages. In contrast to the mechanisms by which TGF-beta induces growth arrest, the pathways that mediate tumor invasion are not well understood. Here, we describe a TGF-beta-dependent invasion assay system consisting of spheroids of MCF10A1 normal breast epithelial cells (M1) and RAS-transformed (pre-)malignant derivatives (M2 and M4) embedded in collagen gels. Both basal and TGF-beta-induced invasion of these cell lines was found to correlate with their tumorigenic potential; M4 showing the most aggressive behavior and M1 showing the least. Basal invasion was strongly inhibited by the TGF-beta receptor kinase inhibitor SB-431542, indicating the involvement of autocrine TGF-beta or TGF-beta-like activity. TGF-beta-induced invasion in premalignant M2 and highly malignant M4 cells was also inhibited upon specific knockdown of Smad3 or Smad4. Interestingly, both a broad spectrum matrix metalloproteinase (MMP) inhibitor and a selective MMP2 and MMP9 inhibitor mitigated TGF-beta-induced invasion of M4 cells, while leaving basal invasion intact. In line with this, TGF-beta was found to strongly induce MMP2 and MMP9 expression in a Smad3- and Smad4-dependent manner. This collagen-embedded spheroid system therefore offers a valuable screening model for TGF-beta/Smad- and MMP2- and MMP9-dependent breast cancer invasion.Urolog

    Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination

    Get PDF
    Therapy-induced resistance remains a significant hurdle to achieve long-lasting responses and cures in cancer patients. We investigated the long-term consequences of genetically impaired angiogenesis by engineering multiple tumor models deprived of endoglin, a co-receptor for TGF-β in endothelial cells actively engaged in angiogenesis. Tumors from endoglin-deficient mice adapted to the weakened angiogenic response, and refractoriness to diminished endoglin signaling was accompanied by increased metastatic capability. Mechanistic studies in multiple mouse models of cancer revealed that deficiency for endoglin resulted in a tumor vasculature that displayed hallmarks of endothelial-to-mesenchymal transition, a process of previously unknown significance in cancer biology, but shown by us to be associated with a reduced capacity of the vasculature to avert tumor cell intra- and extravasation. Nevertheless, tumors deprived of endoglin exhibited a delayed onset of resistance to anti-VEGF (vascular endothelial growth factor) agents, illustrating the therapeutic utility of combinatorial targeting of multiple angiogenic pathways for the treatment of cancer

    ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis

    Get PDF
    ENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis

    TGFβ Signaling and Cardiovascular Diseases

    No full text
    Transforming growth factor &#946; (TGF&#946;) family members are involved in a wide range of diverse functions and play key roles in embryogenesis, development and tissue homeostasis. Perturbation of TGF&#946; signaling may lead to vascular and other diseases. In vitro studies have provided evidence that TGF&#946; family members have a wide range of diverse effects on vascular cells, which are highly dependent on cellular context. Consistent with these observations genetic studies in mice and humans showed that TGF&#946; family members have ambiguous effects on the function of the cardiovascular system. In this review we discuss the recent advances on TGF&#946; signaling in (cardio)vascular diseases, and describe the value of TGF&#946; signaling as both a disease marker and therapeutic target for (cardio)vascular diseases.</p

    Clonal hematopoiesis, aging, and cardiovascular diseases

    No full text
    Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Many studies have provided evidence that both genetic and environmental factors induce atherosclerosis, leading thus to cardiovascular complications. Atherosclerosis is an inflammatory disease, and aging is strongly associated with the development of atherosclerosis. Recent experimental evidence suggests that clonal hematopoiesis (CH) is an emerging cardiovascular risk factor that contributes to the development of atherosclerosis and cardiac dysfunction and exacerbates cardiovascular diseases. CH is caused by somatic mutations in recurrent genes in hematopoietic stem cells, leading to the clonal expansion of mutated blood cell clones. Many of the mutated genes are known in the context of myeloid neoplasms. However, only some individuals carrying CH mutations develop hematologic abnormalities. CH is clearly age dependent and is not rare: at least 10%–20% of people >70 years old carry CH. The newly discovered association between myeloid leukemia-driver mutations and the progression of CVDs has raised medical interest. In this review, we summarize the current view on the contribution of CH in different cardiovascular diseases, CVD risk assessment, patient stratification, and the development of novel therapeutic strategies. Despite advances in the medical and interventional clinical management of patients, cardiovascular diseases (CVDs) remain the leading cause of death worldwide. It is well appreciated that atherosclerosis represents the underlying cause of most CVDs [1]. Atherosclerosis is a chronic inflammatory disease that leads to the formation of atheromatous lesions in the vessel associated with increased recruitment, adhesion, and proliferation of different leukocyte subsets to the endothelium [1]. Several cardiovascular risk factors (CRFs) have been found to enhance the risk of CVD (Figure 1), including hypercholesterolemia (HC), diabetes mellitus (DM), hypertension, metabolic syndrome, obesity, and smoking [2]. Inflammation plays a crucial role in the development of CVDs and several studies have reported that CRFs enhance production of myeloid cells and multipotent hematopoietic progenitors in the bone marrow and in this way may promote atherosclerosis and disease development [3]
    corecore