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Abstract

ENDOGLIN (ENG) is a co-receptor for transforming growth factor-b (TGF-b) family members that is highly expressed in
endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with
the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed
that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies
even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-
derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals
isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation.
Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-
induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis.
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Introduction

During development of the embryo, blood vessels evolve de novo

from hemangioblasts that differentiate into endothelial cells and

form a primary vascular plexus. This process is defined as

vasculogenesis [1]. Angiogenesis refers to the remodeling and

maturation of this primitive vascular network into a branched

vascular network [2]. Angiogenesis is a dynamic and carefully

balanced process involving an activation phase associated with

increased vascular permeability, basement membrane degrada-

tion, endothelial proliferation and migration, and a resolution

phase accompanied by inhibition of endothelial cell proliferation

and migration, in parallel with basement membrane reconstitution

[3]. In the maturation phase the recruitment of pericytes and

vascular smooth muscle cells is needed to maintain vessel stability

and protect endothelial cells from apoptosis [4,5].

Vascular endothelial growth factor (VEGF) plays a very

prominent role in vasculogenesis and angiogenesis. VEGF

represents a family of related cytokines, of which the VEGF-A

isoform is a potent endothelial mitogen strongly induced by

hypoxia [6]. Mice lacking one Vegfa allele die at embryonic day

(E)8.5 as a result of vascular malformations [2,7]. VEGF-A

signaling occurs via the high affinity tyrosine kinase receptors

VEGFR1 (FLT-1), and VEGFR2 (FLK-1) [8,9]; VEGFR2 is the

important endothelial VEGF receptor during angiogenesis. Vegfr2

knockout mice die at E8.5 from impaired development of

hematopoietic and endothelial cells [10] and closely resemble

VEGF-A deficient embryos.

Endoglin (ENG or CD105) is a transmembrane glycoprotein

essential for angiogenesis and vascular development, which is

predominantly expressed in vascular endothelial cells [11]. Mice

lacking Eng die at El0.5-E11.5 from angiogenic and cardiovascular
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defects. The early steps of vasculogenesis appear to be normal but

the primary endothelial network fails to remodel into a mature

circulatory system [12–14]. ENG functions as a co-receptor for

transforming growth factor-b (TGF-b) family members, and

interacts with their signaling serine/threonine kinase receptors

[15,16]. TGF-b relays its signal via Type I receptors (TbRI), also

termed as activin receptor-like kinases (ALKs). TbRI acts

downstream of type II receptors (TbRII) [17] and mediates the

activation of intracellular SMAD effector transcription factors

[18]. In endothelial cells, TGF-b can signal via two different

TbRIs, ALK1 and ALK5 [3,19]. Activation of ALK1 induces

SMAD1 or 25 phosphorylation and mediates endothelial cell

proliferation and migration, whereas ALK5 induces SMAD2 and

23 activation leading to vascular quiescence [3,20]. ENG

promotes ALK1/Smad1/5 signaling and inhibits ALK5/

SMAD2/3 signaling [21–23]. ENG and ALK1 have also been

shown to bind other TGF-b family members. Bone morphogenetic

protein (BMP) 9, in particular, can bind directly and with high

affinity to ENG and ALK1 [24,25].

In humans, mutations in Eng lead to hereditary hemorrhagic

telangiectasia type I (HHT1, also known as Rendu-Osler-Weber

syndrome), while HHT2 is associated with mutations in the type I

receptor, ALK1 [26], [27]. HHT is an inherited autosomal-

dominant vascular disorder that affects the blood vessels of many

organs. Characteristic symptoms include epistaxis (nosebleeds),

skin and mucosal telangiectases associated with hemorrhage, as

well as pulmonary, cerebral and hepatic arteriovenous malforma-

tions [28,29].

During the differentiation of mouse embryonic stem cells

(ESCs) in vitro, hematopoietic commitment within Vegfr2+

precursor populations are characterized by Eng expression [30].

In particular, Eng is expressed during the progression from the

Vegfr2+Cd452 to Vegfr22Cd45+ stage, marking the hemangioblast

[31]. In Eng deficient ESCs, the number of hemangioblast

precursors were reduced and myelopoiesis and definitive

erythropoiesis were severely impaired, suggesting that the

regulated expression of ENG functions to support lineage-specific

hematopoietic development from VEGFR2+ expressing precur-

sors [30,31]. Additional studies with forced expression of ENG in

ESCs and transcriptional profiling studies on ENG+ and

VEGFR2+ expressing cells from E7.5 embryos further supported

an important role for ENG in hematopoietic development

[32,33].

In the present study, we examined the role of ENG in

vasculogenesis and angiogenesis using aggregates of ESCs known

as embryoid bodies (EBs). We found that endothelial cell

differentiation was not affected by a lack of ENG, but that

VEGF-induced angiogenesis was severely impaired. The effects

were dependent on the level of Eng: heterozygotes exhibited an

intermediate phenotype, reminiscent of features in HHT1

patients. These results were validated and consolidated by

shRNA-mediated Eng depletion and pharmacological ENG

inhibition studies in endothelial cells. The impaired VEGF-

induced endothelial cell sprouting in the absence of ENG might

provide a suitable cell model to screen for drugs that can rescue

this phenotype, which might lead to novel treatment modalities.

Results

Absence of Eng impairs organization of vascular
structures in 15-day-old embryoid bodies

To elucidate the role of ENG in blood vessel morphogenesis

we examined the effect of Eng gene dosage using the established

assay of differentiation of ESCs into EBs [34]. When induced to

differentiate, Eng+/2 or Eng2/2 ESC lines [13] were found to

form EBs of similar size and compactness to those of wild type

EBs (Fig. 1A). Next, the assembly of vascular structures was

analyzed by platelet endothelial cell adhesion molecule (PE-

CAM)-1 staining of sections of ESC-derived EBs with different

Eng gene dosage (Eng+/+, Eng+/2 or Eng2/2) obtained after

15 days of differentiation embedded in plastic and sectioned

(Fig. lB). Morphology of the vasculature formed in wild type

ESC-derived EBs was very similar to that of the yolk sac in wild

type mouse embryos (Fig. 1B). Multiple blood islands, lined with

a single layer of thin elongated endothelial cells, were found

between the outer endoderm and the inner ectoderm layers

(Fig. 1B), as reported previously by Wang et al. [35]. The number

of blood islands in Eng2/2 ESC-derived EBs appeared less

numerous than in the wild type ESC-derived EBs and

endothelial cells were found in clusters rather than in elongated

single cell layers, confirming the defective formation of vessel-like

structures in Eng2/2 ESC-derived EBs (Fig. 1B). Vascular

structures also developed in Eng+/2 ESC-derived EBs, but their

frequency and organization were markedly reduced compared to

those in wild type ESC-derived EBs, indicating a dose dependent

effect of Eng on vascular organization (Fig. 1B).

ENG does not affect endothelial cell differentiation
Two processes are responsible for the formation of blood vessels

during embryonic development: (i) vasculogenesis, the primary in

situ differentiation of endothelial precursors from mesoderm, and

their organization into a primary capillary plexus and (ii)

angiogenesis, the formation of new vessels by a process of

sprouting from pre-existing vessels [1], [36]. RT-PCR analysis of

endothelial cell specific markers on ESC-derived EBs collected

from days 0 to 20 were used to define the role of ENG during

endothelial cell differentiation. Distinct gene expression patterns

were induced as differentiation proceeded. Vegfr1 was rapidly up-

regulated at day 3 and Vegfr2, Tie-1 and Tie-2 more prominently at

day 5 (Fig. 2A). The expression patterns of the different EC

markers were similar in Eng2/2 ESC-derived EBs. In addition, we

determined the number of PECAM-1 positive cells in dissociated

11-day-old EBs by FACS analysis and found no differences

between wild type, Eng+/2 or Eng2/2 ESC-derived EBs (Fig. 2B).

Analysis of the expression of multiple pericyte-vascular smooth

muscle markers by RT-PCR also did not reveal striking differences

between ESC-derived EBs with different Eng gene dosage (Fig. 2C).

Taken together, our results show that ENG is not required for

endothelial and mural cell differentiation.

Endothelial cell organization is disrupted in Eng2/2

ESC-derived EBs plated on gelatin
EBs plated on a gelatin-coated substrate can develop branching

vascular structures indicative of vascular morphogenesis [37].

Endothelial cells are initially aggregated in dense clusters but when

plated, rapidly form thin branching tubes, in a process resembling

angiogenesis. To determine the role of ENG in this process, we

plated 11-day-old EBs derived from Eng+/+, Eng+/2 and Eng2/2

ESCs and maintained them in culture for four additional days

before staining them with an antibody to PECAM-1 and

hematoxylin to reveal the vascular network. Three different

phenotypes could be identified in the EBs: (i) those with an

extensively branched vascular network without endothelial cell

clusters categorized as ‘‘organized’’, (ii) those forming some vessels

and still containing endothelial cell clusters referred to as

‘‘intermediate’’, (iii) those with endothelial cells clusters only;

these were designated as ‘‘dispersed’’ (Fig. 3A). Of around 90 EBs

scored in each case in two independent experiments, on average

ENDOGLIN in VEGF-Induced Angiogenesis
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about 63% of Eng+/+ EBs showed an organized phenotype, ,26%

an intermediate phenotype and only ,11% a dispersed phenotype

(Fig. 3B). By contrast, in the Eng2/2 EBs, ,39% lacked cord-like

structures entirely and were classified as dispersed, whereas ,59%

had an intermediate phenotype. Furthermore, the length of the

vessel sprouts that did form was greatly reduced compared to those

of the Eng+/+ EBs and vessels appeared often wider. Quantitative

analysis also showed that an intermediate vascular phenotype

predominated in the Eng+/2 EBs with ,20% dispersed and ,60%

intermediate phenotypes (Fig. 3B). When EBs were embedded into

a collagen gel and allowed to form vascular sprouts in 3D, we

Figure 1. Impaired vasculature in Eng null-mutation ESC-derived 11-day-old EBs. (A) Eng+/2 or Eng2/2 ESC lines form EBs with no
difference when compared to EBs derived from wild type ESCs (B) PECAM-1 whole mount immunohistochemistry of representative wild type, Eng+/2,
and Eng2/2 ESC-derived 11-day-old EBs. Wild type ESC-derived EBs form a primitive vascular plexus. In contrast, Eng2/2 ESC-derived EBs form
irregular vascular structures with endothelial cell clusters. Light microscopy of serial plastic sections of wild type, Eng+/2; and Eng2/2 ESC-derived 11-
day-old EBs stained as whole mount for PECAM-1. Black arrowhead indicates vessel like structures. Asterisk indicates endothelial cell clusters.
doi:10.1371/journal.pone.0086273.g001

ENDOGLIN in VEGF-Induced Angiogenesis
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observed a reduction in both number of sprouts and sprout length

in the Eng2/2 EBs (Fig. S1).

To validate the data obtained with the Eng2/2 ES cell line we

depleted Eng by shRNAs targeting Eng in ESCs. Essentially we

obtained the same results as for ESCs in which gene dosage was

Figure 2. Expression of endothelial-specific markers during vascular development in EBs. (A) RT-PCR analysis of endothelial cell markers
was performed on ESC and EBs cultured for the indicated number of days. Abbreviations: PECAM, platelet endothelial cell adhesion molecule; tie,
tyrosine kinase with immunoglobulin-like loop and epidermal growth factor homology domain; VEGF, vascular endothelial growth factor receptor (B)
The number of PECAM-1 positive cells was quantified by FACS analysis of the cell suspension of wild type, Eng+/2, and Eng2/2 ESC-derived 11-day-old
EBs. (C) RT-PCR analysis of pericyte-smooth muscle cell markers was performed on ESC and EBs cultured for the indicated number of days. PCR
primers used in this Figure are available upon request. Abbreviations: Aebp, adipocyte enhancer binding protein; Axl, a receptor tyrosine kinase;
Smooth; Smoothelin B; Cspr, cysteine- and glycine-rich protein; Cspg, chondroitin sulfate proteoglycan; Cnn, calpoin; Pdgf, platelet-derived growth
factor, Rgs, regulator of G protein signaling.
doi:10.1371/journal.pone.0086273.g002

ENDOGLIN in VEGF-Induced Angiogenesis
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reduced (Fig. 4). Partial knock down of Eng in ESC in

differentiated EBs (Fig. 4B, 4C) interfered with efficient VEGF-

induced sprouting (Fig. 4D), whereas expression of endothelial

markers Vegfr2 and VE-Cadherin mRNA was not significantly

affected (Fig. 4C).

VEGF-induced angiogenesis is reduced in fetal
metatarsals from Eng+/2 mice

In the studies above, VEGF was provided as the angiogenic

stimulus. VEGF is a potent mitogen for endothelial cells and

elevated ENG expression has been associated with activated

endothelial cells in tumor stroma [38]. To investigate a possible

interplay between VEGF and ENG in angiogenesis, we compared

the VEGF-induced angiogenic response in fetal mouse metatarsals

derived from wild type and Eng+/2 mice. After adherence of the

fetal bones to the culture dish, fibroblast-like cells migrate from the

bones to form a monolayer, on which a tubular network of

endothelial cells is formed [38,39]. Staining of this endothelial cell

network with an antibody to PECAM-1 showed that the VEGF-

induced angiogenic responses, as measured by the number and the

length of capillary sprouts were significantly reduced in the Eng+/2

Figure 3. Eng2/2 ESC-derived EBs plated on gelatin coated plates lack organized vessel structures. (A) PECAM-1 immunohistochemical
staining of ESC-derived 11-day-old EBs plated on gelatin for 4 days displayed ‘‘organized’’, ‘‘intermediate’’ or ‘‘dispersed’’ phenotype. (B)
Quantification of wild type, Eng+/2, and Eng2/2 ESC-derived 15-day-old EBs vascular phenotypes as they were defined in A.
doi:10.1371/journal.pone.0086273.g003

ENDOGLIN in VEGF-Induced Angiogenesis
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Figure 4. shRNA-mediated knock down of Eng inhibits VEGF-induced endothelial cell sprouting of EBs. ES cells were transduced with
either scrambled or endoglin targeting shRNA. ES cells formed EBs during 4 days of hanging drop culture before embedding in collagen and
stimulation with VEGF (30 ng/ml). Sprouting EBs were analyzed after 8 days of VEGF stimulation. A) Control EBs and EBs with incomplete endoglin
knockdown stained for endothelial marker PECAM-1 (green) and DAPI (blue). Control EBs have large and many outgrowing sprouts of endothelial
cells, which form extensive networks. EBs with incomplete Eng knockdown show less sprouts, which do not seem to form as extensive networks as
control EBs. Sheets of cells that are mostly PECAM-1 negative have formed between the sprouts. B) Control EBs and EBs with incomplete Eng
knockdown stained for ENG (green) and nuclear marker hoechst (blue). ENG is present in the entire sprout in the control EBs, with the highest
expression towards the tip of the sprout. In the EBs with incomplete knockdown showed expression of ENG mainly in the tips of the outgrowing
sprouts. The cellular sheets hardly had ENG expression. C) qPCR analysis of Eng, PECAM-1 and VE-cadherin expression during differentiation of the

ENDOGLIN in VEGF-Induced Angiogenesis
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metatarsals (Fig. 5). This result suggests that ENG is required for

efficient VEGF-induced angiogenesis.

Inhibition of ENG expression or function mitigates VEGF-
induced sprouting of HUVECs

To elucidate the role of ENG in VEGF-induced endothelial

sprouting, we used a 3D-endothelial cell spheroid-sprouting assay,

an established model for studying early in vitro angiogenic

responses [40]. Non-stimulated spheroids of human umbilical

vein endothelial cells (HUVECs) in collagen remain quiescent, and

mimic the quiescent endothelial cells in the vessel wall. When

stimulated with VEGF, tube-like protrusions emerge from the

HUVEC spheroid within one day. We observed that shRNA-

mediated depletion of Eng in HUVECs significantly reduced the

VEGF-induced response in this assay (Fig. 6A, B). In addition,

treatment of HUVECs with the ENG neutralizing antibody

TRC105 also mitigated this response (Fig. 6C), confirming that

inhibition of ENG function attenuates the VEGF-induced

angiogenic response.

Direct VEGF-induced signaling is not affected in Eng-
deficient cells

The data above suggest an involvement of ENG in the VEGF

signaling pathway or crosstalk between ENG and the VEGF

pathway. We therefore further investigated the effect of ENG on

VEGF signaling. The first event in the VEGF signaling cascade is

binding of VEGF to its receptor, VEGFR2. However, specific

depletion of Eng in HUVECs using shRNA did not affect VEGF

binding to VEGFR2 as measured by affinity crosslinking with

radiolabeled VEGF (data not shown). After VEGF-VEGFR2

interaction, VEGFR2 autophosphorylates itself at amino acid

1175, and thereafter initiates activation of the ERK kinase

pathways. However, analysis of VEGF-induced VEGFR2, phos-

pho-ERK pathways did not reveal any significant changes upon

Eng knock down (Fig. 6D). These data indicate that ENG

deficiency does not affect VEGF-induced ERK signaling directly.

Discussion

In the present study, we examined the role of ENG in

vasculogenesis and angiogenesis using aggregates of mouse ESCs

known as EBs that were challenged with angiogenic supporting

factors, including VEGF. Under appropriate conditions, both

vasculogenesis and angiogenesis take place in EBs [41–45]. We

compared EBs from wild type mouse ESCs with those from mouse

ESCs with heterozygous or homozygous deletions in Eng (Eng+/2

and Eng2/2, respectively). We found that the endothelial cell

differentiation program in ESC-derived EBs is not affected by

homozygous deletion of Eng. However, homozygous mutant

endothelial cells were severely inhibited in their ability to form

organized vascular structures either following plating of EBs on

gelatin in 2D or in 3D collagen gels, supporting evidence for an

essential role of ENG in VEGF-mediated angiogenesis. This is

consistent with reports by Bourdeau et al. [13], Li et al. [14] and

Arthur et al. [12], and more recently by Park et al. [46]. However

these data are different from earlier reports on the Eng2/2 ESCs

claiming no effect on endothelial cell organization in differentiat-

ing embryoid bodies. However, different methods were used,

which might have contributed to the different outcomes [47]. To

validate the defect in sprouting of Eng2/2 ESC lines compared

with control Eng+/+ ESC, we depleted Eng by shRNA. Essentially

we were able to confirm the results obtained using the knock out

cells in that they are also defective in VEGF-induced endothelial

cell sprouting, albeit not as dramatically as knock out cells.

shRNA-mediated depletion has the advantage of looking at the

effects of Eng depletion at an early stage, before any long term

adaptation responses occur. Thus, we conclude that ENG is

responsible for the lack of VEGF-induced endothelial vascular

organization.

control and Eng knockdown ES cells. Endoglin expression is reduced by approximately 85% in the ES cells, but during differentiation, at day 7 and 9,
expression is restored to half of the normal levels. Expression of Vegfr2 and VE-cadherin did not significantly differ between control and endoglin
knockdown EBs at the ES cell state or at day 7 and 9 of differentiation. D) Analysis of number of tips per EB. Endoglin knockdown EBs exhibit
significantly less sprouts than the control EBs (p,0.01).
doi:10.1371/journal.pone.0086273.g004

Figure 5. VEGF-induced angiogenesis is impaired in Eng+/2 fetal metatarsal bones. Metatarsals of 17-day-old mouse fetuses were prepared
from wild type and Eng+/2 mice, transferred to cell-culture plates, allowed to adhere, and then stimulated with VEGF (50 ng/ml). (A) Cultures were
fixed and vessel-like structures were visualized by anti-PECAM-1 staining. Six bones were stimulated per experimental group and one representative
picture of each group is shown. (B) VEGF addition stimulated the formation of vessel-like structures. No significant difference in the baseline vascular
network formation was observed between wild type and Eng+/2 metatarsals. The induction of the vascular network of wild type metatarsals is
significantly stronger than the network of Eng+/2 metatarsals. P#0.05.
doi:10.1371/journal.pone.0086273.g005

ENDOGLIN in VEGF-Induced Angiogenesis
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We observed interdependence for ENG in VEGF-induced

angiogenic responses. Genetic depletion of Eng from endothelial

cells and pharmacological inhibition using TRC105 ENG

antibody severely affected VEGF-induced endothelial cell sprout-

ing. These results are in line with previous studies, which

demonstrated that ENG is essential for normal growth, migration

and cord formation of endothelial cells [21,48,49]. In addition, our

results are consistent with a recent report that showed that

TRC105 inhibited VEGF and FGF-induced HUVEC endothelial

tube formation when co-cultured with dermal fibroblasts [50].

Moreover, soluble ENG has been shown to inhibit tumor

angiogenesis [51,52], and elevated placental expression of ENG

results in high serum levels of soluble ENG that contribute to

vascular dysfunction in pre-eclampsia [53].

Remarkably, mouse embryonic endothelial cells (MEECs)

isolated from Eng2/2 embryos have been described as exhibiting

Figure 6. Eng deficiency inhibits VEGF-induced sprouting of HUVEC spheroids. (A) Effect of shRNA-mediated depletion of Eng on VEGF-
induced endothelial cell sprouting. HUVECs were transduced with lentivirus expressing endoglin shRNA overnight. HUVEC spheroids with deficient
endoglin expression were embedded in collagen and stimulated with VEGF (50 ng/ml). A representative experiment is shown. (B) Quantitation of
effects seen in (A). (C) Effect of TRC105 ENG antibody on VEGF-induced endothelial cell sprouting. HUVEC spheroids were embedded in collagen and
stimulated with VEGF (50 ng/ml), TRC105 (10 mg/ml), or both overnight. As control antibody for experiments using TRC105, the Fc domain (MOPC-21)
from Bio Express, West Lebanon, NH, was used. Pictures were taken by phase-contrast microscopy. Quantitative analysis of the mean total sprout
length was performed on 10 spheroids per experimental group. P#0.05. (D) VEGF-induced VEGFR2 phosphorylation at site 1175 and extracellular
regulated kinase (ERK) mitogen activated protein (MAP) kinase phosphorylation was examined in shRNA-mediated Eng knockdown cells. Two bands
were detected with the phosphor ERK MAPK antibodies with a molecular weight of 44 and 42 kDa; they represent ERK1 and ERK2 isoforms,
respectively. Number sign (#) represents a background band, indicating the even loading for the experiment. Asterisks indicate the protein bands
with expected size.
doi:10.1371/journal.pone.0086273.g006

ENDOGLIN in VEGF-Induced Angiogenesis
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enhanced proliferation [54]. The basis for the differences between

our findings here and these studies is not clear. One explanation may

be adaptive mechanisms that take place in endothelial cells in order

to compensate for reduced ENG expression in vivo [21,54–56].

Analysis of yolk sac vasculature in Eng mutant mice has shown

previously that vascular smooth muscle cells are sparse in the

vicinity of vessels lacking endoglin and it was striking that

immunodetectable TGF-bl was reduced in the smooth muscle

cells although TGF-bl mRNA levels in the adjacent endothelial

cells were unaffected [55]. The impaired ability of endothelial cells

to secrete or activate TGF-b1 was believed to explain the lack of

phosphorylated Smad2 in the adjacent mesothelium and the

subsequent failure of these cells to differentiate into vascular

smooth muscle cells. In the EB vasculogenesis assay used here,

vascular smooth muscle cells did form and organize to some

extent, albeit abnormally, in the absence of Eng in contrast to the

observations in vivo. However, the culture conditions used included

the use of fetal bovine serum as a medium supplement, which

could provide active TGF-b and facilitate partial rescue. Since the

EB vasculogenesis assay closely models aspects of vascular

development and includes both the differentiation and organiza-

tional aspects of EC and vascular smooth muscle cell components,

it is potentially useful in screening anti- or pro-angiogenic drugs as

well as in understanding the underlying molecular mechanisms.

In conclusion, our results provide insights into the molecular

mechanisms that underlie vascular defects reminiscent of those in

HHT1 patients and opens new avenues for inhibition of VEGF

signaling by interfering with ENG function.

Materials and Methods

Cell culture
HUVECs. Human umbilical vein endothelial cells (HUVECs)

cells were cultured in Medium 199 with Earle’s salt and L-

glutamine (Gibco), 10% FCS, heparin (LEO pharma), bovine

pituitary extract (Gibco) and penicillin/streptomycin (PS) on plates

coated with 1% gelatin, at 37uC and 5% CO2. HUVECs were

used up to passage 4. Experiments were confirmed with HUVECs

from different donors.

HUVECs were isolated from umbilical cords. The LUMC has

the policy that umbilical cords are considered as ‘‘rest material’’

and collection can be performed without permission of the ethical

committee, provided that the donor of the umbilical cord has

signed a written consent and that collection and processing of the

umbilical cord is performed anonymously. At the LUMC obstetric

unit, where the umbilical cords were collected, the donor of the

umbilical cord was asked to sign a formal waiver. The written

consents are archived at the department of Obstetrics at LUMC

and collection of the umbilical cord was performed anonymously.

Embryonic stem cell lines and culture. Two independent

R1 ESC lines were used as controls. Eng+/2 mouse embryonic

stem cells (ESCs) were generated by gene targeting of the parental

wild-type 129/Ola-derived E14 ES cell lines, deleting 609 base

pairs (bp), including Eng exon 1 and its initiation codon and

leaving the Eng promoter intact [13]. Eng2/2 ESCs were derived in

vitro from Eng+/2 ESCs by selection with high concentrations of

G418 [30]. Genomic DNA was isolated from ESC lines using

standard techniques [57]. Primers MEFI and MERl amplify

normal Exon 1 (300 bp) and primers MEFR1 and MEZR amplify

the recombinant product (476 bp), as previously described [13].

ESC lines were cultured in the presence of mouse embryonic

fibroblasts (MEFs) in DMEM, supplemented with 20% heat-

inactivated fetal bovine serum (FBS), 0.1 mM [3-Mercaptoetha-

nol, lx non-essential amino acids and 1000 U/ml recombinant

Leukemia Inhibitory Factor (LIF).

Lentiviral transduction
HUVECs were infected with lentivirus encoding an shRNA

sequence against human Eng (TRCN0000003273,

TRCN0000003276) selected from the MISSION shRNA library

(Sigma) and a third lentivirus encoding shRNA was generated in

our lab [58]. R1-ES cells were infected with lentivirus encoding an

shRNA targeting mouse Eng (TRCN0000094355, MISSION

shRNA library Sigma). As a control, a non-targeting shRNA

sequence (SHC002) (Sigma) or empty vector pRRL was used.

Virus transduction was performed overnight, and the infected cells

were selected using culture medium containing puromycin (1 mg/

ml) for 48 h. The efficiency of Eng knockdown was verified by

qPCR.

In vitro differentiation of embryonic stem cell clones
Two different methods were used to differentiate ES cells in vitro.

Method 1: ESC lines were cultured in hanging drops to form EBs,

as described previously [59]. Briey, 800 cells were cultured in 20 ml

of DMEM, supplemented with 20% FBS, 25 ng/ml VEGF,

50 ng/ml bFGF-2, hanging from the lid of the culture dish for

5 days, which allows the formation of cell aggregates (EBs). This

makes it possible to control the size of the EBs and circumvents

paracrine stimulation between EBs, and therefore allows a very

high degree of reproducibility. Subsequently, EBs were either (i)

cultured in suspension on bacterial dishes coated with 1% agar for

11 or 15 days. EBs were then washed with PBS and fixed in

methanol (MeOH)-dimethyl sulfoxide (DMSO) in a ratio of 4:1,

overnight (o/n) at 4uC before staining; or (ii) 11-day old EBs were

plated on gelatin coated coverslips for 4 days and then fixed in

Zinc fixative o/n at 4uC before staining.

Method 2: Mixed Feeder-ES cell cultures were trypsinized and

subsequently cultured for 45 minutes on gelatin-coated plates

before the experiment in order to deplete the MEFs, which adhere

faster to the plate. The ES cells were harvested and plated in

suspension as hanging drops of 20 ml in complete ES-medium,

containing 1200 cells/drop, for four days.

Embryoid body maturation in 2D culture
Four-day old EBs obtained with method 2 were plated in

gelatin-coated 6 well-plates with 15–20 EBs per well. EBs were

cultured in ES medium without LIF and supplemented with

50 ng/ml hVEGF-165 (PeproTech, Rocky Hill, USA). After 7 or

9 days, EBs were washed with PBS and RNA was isolated for

qPCR analysis.

Embryoid body maturation in 3-D Collagen matrix
Method 1: All the ingredients of the collagen medium (DMEM,

20% FBS, 25 ng/ml VEGF, 50 ng/ml bFGF-2) with the

exception of collagen were mixed and stored on ice before harvest

of the EBs to avoid prior polymerization of the medium. Prior to

use, rat tail type 1 collagen was added and mixed to a final

concentration of 1.25 mg/ml. 11-day-o1d EBs were immediately

incorporated into the collagen medium at a final concentration of

50 EBs/ml. 12 ml was poured into a 35 mm bacterial grade Petri

dish and cultures incubated for 3 days at 37uC in a 5% CO2

atmosphere [30,42]. For further analysis of sprouting vessels, the

35 mm gel dish was inverted over a 50 mm 675 mm glass slide.

The collagen gel was gently laid out on the slide and excess liquid

around the gel removed by pipetting with a dispenser. The gel was

then dehydrated using nylon linen and absorbent filter cards. The
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slide was air-dried for 12 hours and incubated in zinc fixative o/n

at 4uC before staining as previously described [42]. The EBs were

stained for PECAM-1 (Clone MEC13.3, BD Biosciences).

Method 2: Collagen solution was made as following: Purecol

(Advanced Biomatrix, San Diego, USA) with 34.65% HAM’s F12

(Gibco), 6.25% NaOH (0.1M), 6.25% 10x F12, 1.25% 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (1M),

0.975% Sodium bicarbonate 7.5% and 0.625% Glutamax.

Four-day old EBs were suspended in 350 ml collagen and

transferred to a 24-well collagen pre-coated plate (one EB per

well). EBs were cultured in complete ESC-medium without LIF

and supplemented with 30 ng/ml hVEGF-165. The EBs were

cultured for eight days in collagen and the medium was changed

every four days. Afterwards, EBs in collagen were washed with

phosphate buffered saline (PBS) and fixed with 4% paraformal-

dehyde in PBS for 30 min at room temperature.

RNA isolation and quantitative PCR
Total DNA-free cellular RNA was extracted with Trizol

reagents, according to manufacturer’s protocol (Invitrogen).

Samples were DNase I treated to eliminate genomic DNA and

1 mg RNA was reversed transcribed as described [60]. All PCR

analyses of the endothelial cell and SMC specific markers were as

previously described [61]. RNA from ESCs and EBs from method

2 was isolated with the NucleoSpin RNA II kit according to

manufacturer’s protocol (Bioké, Leiden, Netherlands). qPCR was

performed with SYBRGreen reagent (Roche) for Eng, Vegfr2 and

VE-cadherin. See Table 1 for sequences. The DDCt method was

applied for the expression profiling. Gene expression is normalized

to house-keeping gene GAPDH and wild type ES cells as the

reference sample.

Immunofluorescence staining
For cryosections, ESC-derived l5-day-old EBs were processed as

previously described [62] and subsequently sectioned at 7 mm

before acetone fixation for 10 minutes at 4uC, followed by

30 minutes air drying at RT. Next, slides were permeabilized for

5 minutes with 0.2% Triton X-100 in PBS, followed by blocking

with 2% BSA in PBS at RT for l hour. The slides were then

incubated with rat anti-mouse PECAM-1 (Clone MEC14.7, Santa

Cruz) o/n at 4uC. The slides were then washed four times in PBS

and incubated for 1 hour with goat anti-rat Cy3 (Jackson

ImmunoResearch Laboratories) at RT. The slides were then

washed four times in PBS and mounted in Mowiol before confocal

laser microscope analysis. Slides containing EBs cultured in 3D-

collagen gel and zinc fixed were permeabilized for 15 minutes with

0.2% Triton X-100 in PBS, followed by blocking with TNB

blocking solution for 1 hour at RT, as described above. EBs were

stained with rat anti-mouse PECAM-1 (Clone MEC13.3, BD

Biosciences). The slides were then washed in TBS and incubated

1 hour with donkey anti-rat FITC (Jackson ImmunoResearch

Laboratories) and goat anti-mouse (Jackson IrnmunoResearch

Laboratories) secondary antibodies diluted in TNB. The slides

were then washed four times in TBS and mounted in Mowiol

before confocal laser microscope analysis. EBs matured in 3D

according to method 2 were excised from collagen. The EBs were

blocked in blocking solution (Tris-Buffered Saline Tween (TBST)

with 3% BSA) for 2 hours or overnight at room temperature.

Staining with primary and secondary antibodies was done

overnight. The EBs were stained with Hoechst to visualize the

nuclei. The following antibodies were used: rat anti-mouse

PECAM-1 (BD Pharmingen) and rat anti-mouse ENG (CD105

MJ7/18, BD Pharmingen). Secondary antibodies: donkey anti-rat

Alexa 488 (Invitrogen) and goat anti-rabbit Alexa 594 (Invitrogen).

EBs were stored at 4uC in PBS until analysis with fluorescence

microscopy. Endothelial cell sprouting from the EBs was

quantified by counting the number of sprouts per EB.

Flow Cytometric analysis
To obtain single cell suspensions for FACS analysis, 15-day-old

EBs were collected from agar coated-dishes and washed twice with

PBS before being incubated for 30 minutes in a dissociation

solution containing 0.2% collagenase B (Roche Diagnostics). EBs

were gently ushed every 5 minutes using one ml tip. After

centrifugation, the cell pellet was washed twice with 2% FBS in

PBS and then incubated for one hour at 4uC with a FITC

conjugated anti-mouse PECAM-1 before FACS analysis.

Western blot analysis
HUVECs were seeded in six-well plates and allowed to grow to

90% confluence. Cells were washed with PBS and serum-starved

for 5 hours. Cells were stimulated with VEGF 50 ng/ml for

5 minutes, washed with PBS and lysed in SDS sample buffer.

Samples were boiled for 10 minutes and subjected to SDS-PAGE

and western blotting. Phospho-VEGFRII, phospho-ERK anti-

bodies were purchased from Cell signaling Technology. ENG was

analyzed with an antiserum recognizing human ENG [63].

3D-culture spheroid assay
HUVECs (400 cells per spheroid) were suspended in Medium

M199 containing Earle’s salt and L-glutamine, 10% FBS,

methylcellulose, heparin, bovine pituitary extract, PS and seeded

in non-adherent round-bottom 96-well plates. After 24 hours,

spheroids were embedded into collagen and stimulated with

corresponding stimuli in the presence or absence of inhibitors or

neutralizing antibodies for another 24 hours. As control antibody

for experiments with ENG neutralizing antibody TRC105, the Fc

domain (MOPC-21) from Bio Express, West Lebanon, NH, was

used. EC sprouts were measured by Olympus Analysis software.

Ex vivo fetal mouse metatarsal angiogenic assay
Metatarsals from 17-day-old mouse fetuses from Eng+/+ and

Eng+/2 mice [12] were dissected as described previously [64]. Six

metatarsals per experimental group were transferred to 24-wells

tissue-culture plates containing a-MEM (Gibco), 10% FBS and

penicillin/streptomycin (PS), and allowed to adhere for 4 days.

Then, medium was replaced by fresh medium containing 50 ng/

ml VEGF. Cultures were fixed 7 days after stimulation and vessel

formation was visualized by anti-PECAM-1 staining [39].

Vascular density was quantified by automated image analysis

with Image J. Animal experiments were approved by the

Institutional Committee for Animal Welfare of the Leiden

University Medical Center (LUMC) and were performed accord-

ing to the regulatory quidelines.

Table 1. qPCR primer sequence.

Target Forward primer Reverse primer

Eng GGTCATGACTCTGGCACTCA AGGCGCTACTCAGGACAAGA

Vegfr2 ACCAAGGCGACTATGTTTGC GGGCAAGTCACTTCAATGGT

VE-cadherin ATTGAGACAGACCCCAAACG TGTTTTTGCCTGAAGTGCTG

GAPDH AACTTTGGCATTGTGGAAG ACACATTGGGGGTAGGAACA

doi:10.1371/journal.pone.0086273.t001
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Statistics
All results are expressed as the mean 6 s.d. Statistical

differences were examined by two-tailed Student’s t-test and

P#0.05 was considered to be statistically significant (in the figures,
*P#0.05 and **P#0.01).

Supporting Information

Figure S1 Eng2/2 ESC derived EBs have impaired
endothelial cell-derived vessel structures. A) Bright field

image and PECAM-1 staining of EBs from Eng+/+ and Eng2/2

ESCs. Both bright field image and the PECAM-1 staining show

that the Eng2/2 EB has less endothelial sprouts than the Eng+/+

EB. B) Quantification of the number of sprouts per EB and length

of the sprouts.

(TIF)

Author Contributions

Conceived and designed the experiments: ZL FL JM SvdD MJG CM PtD.

Performed the experiments: ZL FL JM SvdD SvdB MvD MT JK SM.

Analyzed the data: ZL FL JM SvdD MJG CM PtD LJACH LvM EP.

Contributed reagents/materials/analysis tools: KK ML HMA CT. Wrote

the paper: ZL FL JM SvdD MJG CM PtD.

References

1. Risau W (1997) Mechanisms of angiogenesis. Nature 386: 671–674.

2. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, et al. (1996)

Abnormal blood vessel development and lethality in embryos lacking a single

VEGF allele. Nature 380: 435–439.

3. Goumans MJ., Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, et al. (2002)

Balancing the activation state of the endothelium via two distinct TGF-b type I

receptors. EMBO J 21: 1743–1753.

4. Gaengel K, Genove G, Armulik A, Betsholtz C. (2009) Endothelial-mural cell

signaling in vascular development and angiogenesis. Arterioscler Thromb.Vasc

Biol 29: 630–638.

5. Bouck N, Stellmach V, Hsu SC. (1996) How tumors become angiogenic. Adv

Cancer Res 69: 135–174.

6. Levy NS, Chung S, Furneaux H, Levy AP. (1998) Hypoxic stabilization of
vascular endothelial growth factor mRNA by the RNA-binding protein HuR.

J Biol Chem 273: 6417–6423.

7. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, et al. (1996)
Heterozygous embryonic lethality induced by targeted inactivation of the

VEGF gene. Nature 380: 439–442.

8. Mustonen T, Alitalo K. (1995) Endothelial receptor tyrosine kinases involved in
angiogenesis. J Cell Biol 129: 895–898.

9. Landgren E, Schiller P, Cao Y, Claesson-Welsh L. (1998) Placenta growth factor
stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and

migration of endothelial cells expressing Flt 1. Oncogene 16: 359–367.

10. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, et al. (1995)
Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice

Nature 376: 62–66.

11. Gougos A., Letarte M. (1988) Identification of a human endothelial cell antigen
with monoclonal antibody 44G4 produced against a pre-B leukemic cell line.

J Immunol 141: 1925–1933.

12. Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, et al. (2000) Endoglin, an
ancillary TGF-b receptor, is required for extraembryonic angiogenesis and plays

a key role in heart development. Dev Biol 217: 42–53.

13. Bourdeau A, Dumont DJ, Letarte M. (1999) A murine model of hereditary
hemorrhagic telangiectasia. J Clin.Invest 104: 1343–1351.

14. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, et al. (1999) Defective

angiogenesis in mice lacking endoglin. Science 284: 1534–1537.

15. Barbara NP, Wrana JL, Letarte M. (1999) Endoglin is an accessory protein that

interacts with the signaling receptor complex of multiple members of the
transforming growth factor-b superfamily. J Biol Chem 274: 584–594.

16. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, et al. (1992) Endoglin is a

component of the transforming growth factor-b receptor system in human
endothelial cells. J Biol Chem 267: 19027–19030.

17. Wieser R, Wrana JL, Massague J. (1995) GS domain mutations that

constitutively activate TbR-I, the downstream signaling component in the
TGF-b receptor complex. EMBO J 14: 2199–2208.

18. Heldin CH, Ostman A, Ronnstrand L. (1998) Signal transduction via platelet-

derived growth factor receptors. Biochim Biophys Acta 1378: F79–113.

19. Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, et al. (2003)

Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGF-

b/ALK5 signaling. Mol Cell 12: 817–828.

20. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, et al. (2000) Activin receptor-like

kinase 1 modulates transforming growth factor-b1 signaling in the regulation of

angiogenesis. Proc Natl Acad Sci USA 97: 2626–2631.

21. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, et al. (2004)

Endoglin promotes endothelial cell proliferation and TGF-b/ALK1 signal
transduction. EMBO J 23: 4018–4028.

22. Guo B, Slevin M., Li C, Parameshwar S, Liu D, et al. (2004) CD105 inhibits

transforming growth factor-b-Smad3 signalling. Anticancer Res 24: 1337–1345.

23. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, et al. (2005)
Interaction and functional interplay between endoglin and ALK-1, two

components of the endothelial transforming growth factor-b receptor complex.
J Cell Physiol 204: 574–584.

24. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. (2007) Identification of

BMP9 and BMP10 as functional activators of the orphan activin receptor-like
kinase 1 (ALK1) in endothelial cells. Blood 109: 1953–1961.

25. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, et al.

(2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell

proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120: 964–972.

26. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, et al.
(1994) Endoglin, a TGF-b binding protein of endothelial cells, is the gene for

hereditary haemorrhagic telangiectasia type 1. Nat Genet 8: 345–351.

27. Johnson DW, Berg JN, Baldwin MA., Gallione CJ, Marondel I, et al. (1996)
Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic

telangiectasia type 2. Nat Genet 13: 189–195.

28. Abdalla SA, Cymerman U, Rushlow D, Chen N, Stoeber GP, et al. (2005) Novel
mutations and polymorphisms in genes causing hereditary hemorrhagic

telangiectasia. Hum Mutat 25: 320–321.

29. Van den Driesche S, Mummery CL, Westermann CJ. (2003) Hereditary
hemorrhagic telangiectasia: an update on transforming growth factor-b signaling

in vasculogenesis and angiogenesis. Cardiovasc Res 58: 20–31.

30. Cho SK, Bourdeau A, Letarte M, Zuniga-Pflucker JC. (2001) Expression and

function of CD105 during the onset of hematopoiesis from Flk1(+) precursors.
Blood 98: 3635–3642.

31. Perlingeiro RC. (2007) Endoglin is required for hemangioblast and early

hematopoietic development. Development 134: 3041–3048.

32. Baik J, Borges L, Magli A, Thatava T, Perlingeiro RC. (2012) Effect of endoglin
overexpression during embryoid body development. Exp Hematol 40: 837–846.

33. Borges L, Iacovino M, Mayerhofer T, Koyano-Nakagawa N, Baik J, et al. (2012)

A critical role for endoglin in the emergence of blood during embryonic
development. Blood 119: 5417–5428.

34. Li X, Claesson-Welsh L. (2009) Embryonic stem cell models in vascular biology.

J Thromb Haemost. 7 Suppl 1: 53–56.

35. Wang R, Clark R, Bautch VL. (1992) Embryonic stem cell-derived cystic
embryoid bodies form vascular channels: an in vitro model of blood vessel

development. Development 114: 303–316.

36. Pardali E, Goumans MJ, ten Dijke P. (2010) Signaling by members of the
Transforming growth factor-b in vascular morphogenesis and disease. Trends

Cell Biol 20: 556–567.

37. Bloch W, Forsberg E, Lentini S, Brakebusch C, Martin K, et al. (1997) b1

integrin is essential for teratoma growth and angiogenesis. J Cell Biol 139: 265–
278.

38. Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, et al. (1995) Up-

regulation of endoglin on vascular endothelial cells in human solid tumors:
implications for diagnosis and therapy. Clin Cancer Res 1: 1623–1634.

39. Deckers M, van der Pluijm G, Dooijewaard S, Kroon M, van, Hinsbergh V, et

al. (2001) Effect of angiogenic and antiangiogenic compounds on the outgrowth
of capillary structures from fetal mouse bone explants. Lab Invest 81: 5–15.

40. Korff T, Augustin HG. (1999) Tensional forces in fibrillar extracellular matrices

control directional capillary sprouting. J Cell Sci 112: 3249–3258.

41. Feraud O, Cao Y, Vittet D. (2001) Embryonic stem cell-derived embryoid
bodies development in collagen gels recapitulates sprouting angiogenesis. Lab

Invest 81: 1669–1681.

42. Feraud O, Vittet D. (2003) Murine embryonic stem cell in vitro differentiation:
applications to the study of vascular development. Histol Histopathol 18: 191–

199.

43. Goumans MJ, Zwijsen A, van Rooijen MA, Huylebroeck D, Roelen BA, et al.

(1999) Transforming growth factor-b signalling in extraembryonic mesoderm is
required for yolk sac vasculogenesis in mice. Development 126: 3473–3483.

44. Vailhe B, Vittet D, Feige JJ. (2001) In vitro models of vasculogenesis and

angiogenesis. Lab Invest 81: 439–452.

45. Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, et al.
(1996) Embryonic stem cells differentiate in vitro to endothelial cells through

successive maturation steps. Blood 88: 3424–3431.

46. Park S, Dimaio TA, Liu W, Wang S, Sorenson CM, et al. (2013) Endoglin
regulates the activation and quiescence of endothelium by participating in

canonical and non-canonical TGF-b signaling pathways. J Cell Sci 126: 1392–
405.

ENDOGLIN in VEGF-Induced Angiogenesis

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e86273



47. Nomura-Kitabayashi A, Anderson GA, Sleep G, Mena J, Karabegovic A, et al.

(2009) Endoglin is dispensable for angiogenesis, but required for endocardial
cushion formation in the midgestation mouse embryo. Dev Biol 335: 66–77.

48. Li C, Hampson IN, Hampson L, Kumar P, Bernabeu C, et al. (2000) CD105

antagonizes the inhibitory signaling of transforming growth factor-b1 on human
vascular endothelial cells. FASEB J 14: 55–64.

49. She X, Matsuno F, Harada N, Tsai H, Seon BK. (2004) Synergy between anti-
endoglin (CD105) monoclonal antibodies and TGF-b in suppression of growth

of human endothelial cells. Int J Cancer 108: 251–257.

50. Nolan-Stevaux O, Zhong W, Culp S, Shaffer K, Hoover J, et al. (2012) Endoglin
requirement for BMP9 signaling in endothelial cells reveals new mechanism of

action for selective anti-endoglin antibodies. PLoS One. 7: e50920.
51. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, et al.

(2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10
via its orphan domain, inhibits blood vessel formation, and suppresses tumor

growth. J Biol Chem 286: 30034–30046.

52. Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, et al. (2010)
Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits

tumor angiogenesis. Cancer Res 70: 4141–4150.
53. Liu Z, Afink G, ten Dijke P. (2012) Soluble fms-like tyrosine kinase 1 and soluble

Endoglin are elevated circulating anti-angiogenic factors in pre-eclampsia.

Pregnancy Hypertention 2: 358–367.
54. Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, Di Guglielmo GM,

et al. (2005) Endoglin null endothelial cells proliferate faster and are more
responsive to transforming growth factor-b1 with higher affinity receptors and

an activated Alk1 pathway. J Biol Chem 280: 27800–27808.
55. Carvalho RL, Jonker L, Goumans MJ, Larsson J, Bouwman P, et al. (2004)

Defective paracrine signalling by TGF-b in yolk sac vasculature of endoglin

mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Develop-
ment 131: 6237–6247.

56. Xu B, Wu YQ, Huey M, Arthur HM, Marchuk DA, et al. (2004) Vascular

endothelial growth factor induces abnormal microvasculature in the endoglin

heterozygous mouse brain. J Cereb Blood Flow Metab 24: 237–244.

57. Sambrook J, Fritsch EF, Maniatis T. (1989) Molecular Cloning. A Laboratory

Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.

58. Bot PT, Hoefer IE, Sluiter JP, van Vliet P, Smit AM, et al. (2009) Increased

expression of the transforming growth factor-beta signaling pathway, endoglin

and early growth response-1 in stable plaques. Stroke 40: 439–447.

59. Slager HG, Freund E, Buiting AM, Feijen A, Mummery CL. (1993) Secretion of

transforming growth factor-b isoforms by embryonic stem cells: isoform and

latency are dependent on direction of differentiation. J Cell Physiol 156: 247–

256.

60. Roelen BA, Lin HY, Knezevic V, Freund E, Mummery CL. (1994) Expression

of TGF-bs and their receptors during implantation and organogenesis of the

mouse embryo. Dev Biol 166: 716–728.

61. Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK. (2004)

Transforming growth factor-b1 signaling contributes to development of smooth

muscle cells from embryonic stem cells. Am J Physiol Cell Physiol 287: C1560–

C1568.

62. Bajanca F, Luz M, Duxson MJ, Thorsteinsdottir S. (2004) Integrins in the mouse

myotome: developmental changes and differences between the epaxial and

hypaxial lineage. Dev Dyn 231: 402–415.

63. Pardali E, van der Schaft DW, Wiercinska E, Gorter A, Hogendoorn PC, et al.

(2011) Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and

melanoma. Oncogene 30: 334–345.

64. van der Pluijm G, Lowik CW, de Groot H, Alblas MJ, van der Wee-Pals LJ, et

al. (1991) Modulation of PTH-stimulated osteoclastic resorption by bisphospho-

nates in fetal mouse bone explants. J Bone Miner Res 6: 1203–1210.

ENDOGLIN in VEGF-Induced Angiogenesis

PLOS ONE | www.plosone.org 12 January 2014 | Volume 9 | Issue 1 | e86273


