10 research outputs found

    Inhibition of Alzheimer’s type toxic aggregates of tau with fungal secondary metabolites

    Get PDF
    Tau is a microtubule-associated protein that is typically found in the axons of neurons. The aggregation of the tau is a significant event in many neurodegenerative diseases including Alzheimer's disease. In these disease tau dissociates from microtubules and begins to form toxic insoluble intracellular tau aggregates. The process of conversion of soluble monomeric tau to insoluble aggregates in not well understood. Differential conformational changes in pathological forms of the protein may affect its propensity for aggregation and function. Post translational modifications such as hyperphosphorylation or truncation may induce these conformational changes and alter aggregation and function. The studies described here used in vitro assays to determine how truncation affects tau conformation and how they can alter aggregation and function. This information helps to describe how intrinsic differences due to modifications of tau can manifest themselves in the varying pathologies of tauopathies. Tau aggregation in a common mode of pathogenesis in tauopathies, including Alzheimer's disease. Tau aggregation correlates with dementia and neurodegeneration and is viewed as a potential therapeutic target for AD. Fungi have historically been a good source of medicinally important compounds. We identified secondary metabolites obtained from Aspergillus nidulans as tau aggregation inhibitors. We identified a novel class of tau aggregation inhibitors, azaphilones. Four of the azaphilones inhibited tau aggregation and disassembled pre-formed tau aggregates without inhibiting tau’s ability to polymerize microtubules. Preliminary NMR studies showed that our most potent azaphilone, aza-9 interacts with specific residues of tau protein in a dose dependent fashion. Aza-9 also disassembled tau aggregates formed by aggregation enhancing truncation mutant 1-391 in a dose dependent fashion. Azaphilones are therefore very promising lead compounds for tau aggregation inhibitors, provide a novel scaffold for the same and represent a new class of compounds with tau aggregation inhibitor activity

    Inhibition of Tau Aggregation by Three Aspergillus nidulans Secondary Metabolites: 2,ω-Dihydroxyemodin, Asperthecin, and Asperbenzaldehyde

    Get PDF
    This is the published version. Copyright 2014 George Theime Verlag. All rights reserved.The aggregation of the microtubule-associated protein tau is a significant event in many neurodegenerative diseases including Alzheimerʼs disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activity. We have screened Aspergillus nidulans secondary metabolites containing aromatic ring structures for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol and the previously identified aggregation inhibitor emodin as a positive control. While several compounds showed some activity, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde were potent aggregation inhibitors as determined by both a filter trap assay and electron microscopy. In this study, these three compounds were stronger inhibitors than emodin, which has been shown in a prior study to inhibit the heparin induction of tau aggregation with an IC50 of 1–5 µM. Additionally, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde reduced, but did not block, tau stabilization of microtubules. 2,ω-Dihydroxyemodin and asperthecin have similar structures to previously identified tau aggregation inhibitors, while asperbenzaldehyde represents a new class of compounds with tau aggregation inhibitor activity. Asperbenzaldehyde can be readily modified into compounds with strong lipoxygenase inhibitor activity, suggesting that compounds derived from asperbenzaldehyde could have dual activity. Together, our data demonstrates the potential of 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde as lead compounds for further development as therapeutics to inhibit tau aggregation in Alzheimerʼs disease and neurodegenerative tauopathies

    Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro

    Get PDF
    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer’s disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, while four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and numbers of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau’s normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold

    Initial Virologic Response and HIV Drug Resistance Among HIV-Infected Individuals Initiating First-line Antiretroviral Therapy at 2 Clinics in Chennai and Mumbai, India

    Get PDF
    Human immunodeficiency virus drug resistance (HIVDR) in cohorts of patients initiating antiretroviral therapy (ART) at clinics in Chennai and Mumbai, India, was assessed following World Health Organization (WHO) guidelines. Twelve months after ART initiation, 75% and 64.6% of participants at the Chennai and Mumbai clinics, respectively, achieved viral load suppression of <1000 copies/mL (HIVDR prevention). HIVDR at initiation of ART (P <.05) and 12-month CD4 cell counts <200 cells/μL (P <.05) were associated with HIVDR at 12 months. HIVDR prevention exceeded WHO guidelines (≥70%) at the Chennai clinic but was below the target in Mumbai due to high rates of loss to follow-up. Findings highlight the need for defaulter tracing and scale-up of routine viral load testing to identify patients failing first-line AR

    Short Communication: Neutralizing Antibody Responses in Recent Seroconverters with HIV-1 Subtype C Infections in India

    No full text
    The longitudinal heterologous neutralization response against two HIV-1 subtype C isolates was studied in 33 ART-naive individuals recently infected with HIV-1 subtype C from India. Seven of 33 (21%) seroconverters demonstrated a consistent response against both isolates (65–100% neutralization), whereas the remaining 26 (79%) were nonresponders. Four of the seven responders demonstrated a neutralization response (>75% neutralization) within 2–3 months of infection and in the remaining three, the response was demonstrated between 22 and 38 months after infection. In the past, HIV vaccines targeted the V3 region for the development of neutralizing antibodies. However, recent studies have shown that anti-V3 antibodies are generated after HIV-1 infection, but are not effective in neutralizing virus. In this study, the V3 sequences of HIV-1 from seven responders were analyzed and compared with those from nonresponders. The V3 region sequences from early and late responders did show certain mutations that were not found in the nonresponders; however none of these mutations could explain the neutralization responses. This suggested that HIV-1 envelope regions other than the V3 domain may be involved in generating a neutralization response. This is the first report that describes the pattern of emergence and persistence of the heterologous neutralization response in recently HIV-1 subtype C-infected individuals from India and studies its association with sequence variation in the V3 region
    corecore