14 research outputs found

    Exome Sequencing Reveals Common and Rare Variants in F5 Associated With ACE Inhibitor and Angiotensin Receptor Blocker–Induced Angioedema

    Get PDF
    Angioedema occurring in the head and neck region is a rare and sometimes life‐threatening adverse reaction to angiotensin‐converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Few studies have investigated the association of common variants with this extreme reaction, but none have explored the combined influence of rare variants yet. Adjudicated cases of ACEI‐induced angioedema (ACEI‐AE) or ARB‐induced angioedema (ARB‐AE) and controls were recruited at five different centers. Sequencing of 1,066 samples (408 ACEI‐AE, ARB‐AE, and 658 controls) was performed using exome‐enriched sequence data. A common variant of the F5 gene that causes an increase in blood clotting (rs6025, p.Arg506Gln, also called factor V Leiden), was significantly associated with both ACEI‐AE and ARB‐AE (odds ratio: 2.85, 95% confidence interval (CI), 1.89–4.25). A burden test analysis of five rare missense variants in F5 was also found to be associated with ACEI‐AE or ARB‐AE, P = 2.09 × 10−3. A combined gene risk score of these variants, and the common variants rs6025 and rs6020, showed that individuals carrying at least one variant had 2.21 (95% CI, 1.49–3.27, P = 6.30 × 10−9) times the odds of having ACEI‐AE or ARB‐AE. The increased risk due to the common Leiden allele was confirmed in a genome‐wide association study from the United States. A high risk of angioedema was also observed for the rs6020 variant that is the main coagulation defect‐causing variant in black African and Asian populations. We found that deleterious missense variants in F5 are associated with an increased risk of ACEI‐AE or ARB‐AE

    A Missense Variant in PTPN22 is a Risk Factor for Drug-induced Liver Injury

    Get PDF
    Background & Aims We performed genetic analyses of a multiethnic cohort of patients with idiosyncratic drug-induced liver injury (DILI) to identify variants associated with susceptibility. Methods We performed a genome-wide association study of 2048 individuals with DILI (cases) and 12,429 individuals without (controls). Our analysis included subjects of European (1806 cases and 10,397 controls), African American (133 cases and 1,314 controls), and Hispanic (109 cases and 718 controls) ancestry. We analyzed DNA from 113 Icelandic cases and 239,304 controls to validate our findings. Results We associated idiosyncratic DILI with rs2476601, a nonsynonymous polymorphism that encodes a substitution of tryptophan with arginine in the protein tyrosine phosphatase, nonreceptor type 22 gene (PTPN22) (odds ratio [OR] 1.44; 95% confidence interval [CI] 1.28–1.62; P = 1.2 × 10–9 and replicated the finding in the validation set (OR 1.48; 95% CI 1.09–1.99; P = .01). The minor allele frequency showed the same effect size (OR > 1) among ethnic groups. The strongest association was with amoxicillin and clavulanate-associated DILI in persons of European ancestry (OR 1.62; 95% CI 1.32–1.98; P = 4.0 × 10–6; allele frequency = 13.3%), but the polymorphism was associated with DILI of other causes (OR 1.37; 95% CI 1.21–1.56; P = 1.5 × 10–6; allele frequency = 11.5%). Among amoxicillin- and clavulanate-associated cases of European ancestry, rs2476601 doubled the risk for DILI among those with the HLA risk alleles A*02:01 and DRB1*15:01. Conclusions In a genome-wide association study, we identified rs2476601 in PTPN22 as a non-HLA variant that associates with risk of liver injury caused by multiple drugs and validated our finding in a separate cohort. This variant has been associated with increased risk of autoimmune diseases, providing support for the concept that alterations in immune regulation contribute to idiosyncratic DILI

    A common missense variant of <i>LILRB<sub>5</sub></i> is associated with statin intolerance and myalgia

    Get PDF
    Aims A genetic variant in LILRB5 (leukocyte immunoglobulin-like receptor subfamily-B) (rs12975366: T > C: Asp247Gly) has been reported to be associated with lower creatine phosphokinase (CK) and lactate dehydrogenase (LDH) levels. Both biomarkers are released from injured muscle tissue, making this variant a potential candidate for susceptibility to muscle-related symptoms. We examined the association of this variant with statin intolerance ascertained from electronic medical records in the GoDARTS study. Methods and results In the GoDARTS cohort, the LILRB5 Asp247 variant was associated with statin intolerance (SI) phenotypes; one defined as having raised CK and being non-adherent to therapy [odds ratio (OR) 1.81; 95% confidence interval (CI): 1.34–2.45] and the other as being intolerant to the lowest approved dose of a statin before being switched to two or more other statins (OR 1.36; 95% CI: 1.07–1.73). Those homozygous for Asp247 had increased odds of developing both definitions of intolerance. Importantly the second definition did not rely on CK elevations. These results were replicated in adjudicated cases of statin-induced myopathy in the PREDICTION-ADR consortium (OR1.48; 95% CI: 1.05–2.10) and for the development of myalgia in the JUPITER randomized clinical trial of rosuvastatin (OR1.35, 95% CI: 1.10–1.68). A meta-analysis across the studies showed a consistent association between Asp247Gly and outcomes associated with SI (OR1.34; 95% CI: 1.16–1.54). Conclusion This study presents a novel immunogenetic factor associated with statin intolerance, an important risk factor for cardiovascular outcomes. The results suggest that true statin-induced myalgia and non-specific myalgia are distinct, with a potential role for the immune system in their development. We identify a genetic group that is more likely to be intolerant to their statins

    Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study

    Get PDF
    BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for druginduced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A* 33: 01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9 - 3.8; P = 2.4 x 10(-8)) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6 - 2.5; P = 9.7 x 10(-9)). The association with A* 33: 01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A* 33: 01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6 - 2.7; P = 4.8 x 10(-9)). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0 - 9.5; P = 7.1 x 10(-9)). We validated the association between A* 33: 01 terbinafine-and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A* 33: 01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.Peer reviewe

    Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

    Get PDF
    Narcolepsy has genetic and environmental risk factors, but the specific genetic risk loci and interaction with environmental triggers are not well understood. Here, the authors identify genetic loci for narcolepsy, suggesting infection as a trigger and dendritic and helper T cell involvement. Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix (R). Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix (R)

    Adipocyte-derived leucine aminopeptidase genotype and response to antihypertensive therapy

    No full text
    Abstract Background Adipocyte-derived leucine aminopeptidase (ALAP) is a recently identified member of the M1 family of zinc-metallopeptidases and is thought to play a role in blood pressure control through inactivation of angiotensin II and/or generation of bradykinin. The enzyme seems to be particularly abundant in the heart. Recently, the Arg528-encoding allele of the ALAP gene was shown to be associated with essential hypertension. Methods We evaluated the influence of this polymorphism on the change in left ventricular mass index in 90 patients with essential hypertension and echocardiographically diagnosed left ventricular hypertrophy, randomised in a double-blind study to receive treatment with either the angiotensin II type I receptor antagonist irbesartan or the beta1-adrenoceptor blocker atenolol for 48 weeks. Genyotyping was performed using minisequencing. Results After adjustment for potential covariates (blood pressure and left ventricular mass index at baseline, blood pressure change, age, sex, dose and added antihypertensive treatment), there was a marked difference between the Arg/Arg and Lys/Arg genotypes in patients treated with irbesartan; those with the Arg/Arg genotype responded on average with an almost two-fold greater regression of left ventricular mass index than patients with the Lys/Arg genotype (-30.1 g/m2 [3.6] vs -16.7 [4.5], p = 0.03). Conclusions The ALAP genotype seems to determine the degree of regression of left ventricular hypertrophy during antihypertensive treatment with the angiotensin II type I receptor antagonist irbesartan in patients with essential hypertension and left ventricular hypertrophy. This is the first report of a role for ALAP/aminopeptidases in left ventricular mass regulation, and suggests a new potential target for antihypertensive drugs.</p

    A Missense Variant in PTPN22 is a Risk Factor for Drug-induced Liver Injury

    No full text
    Background & Aims: We performed genetic analyses of a multiethnic cohort of patients with idiosyncratic drug-induced liver injury (DILI) to identify variants associated with susceptibility. Methods: We performed a genome-wide association study of 2048 individuals with DILI (cases) and 12,429 individuals without (controls). Our analysis included subjects of European (1806 cases and 10,397 controls), African American (133 cases and 1,314 controls), and Hispanic (109 cases and 718 controls) ancestry. We analyzed DNA from 113 Icelandic cases and 239,304 controls to validate our findings. Results: We associated idiosyncratic DILI with rs2476601, a nonsynonymous polymorphism that encodes a substitution of tryptophan with arginine in the protein tyrosine phosphatase, nonreceptor type 22 gene (PTPN22) (odds ratio [OR] 1.44; 95% confidence interval [CI] 1.28–1.62; P = 1.2 × 10 –9 and replicated the finding in the validation set (OR 1.48; 95% CI 1.09–1.99; P =.01). The minor allele frequency showed the same effect size (OR > 1) among ethnic groups. The strongest association was with amoxicillin and clavulanate-associated DILI in persons of European ancestry (OR 1.62; 95% CI 1.32–1.98; P = 4.0 × 10 –6 ; allele frequency = 13.3%), but the polymorphism was associated with DILI of other causes (OR 1.37; 95% CI 1.21–1.56; P = 1.5 × 10 –6 ; allele frequency = 11.5%). Among amoxicillin- and clavulanate-associated cases of European ancestry, rs2476601 doubled the risk for DILI among those with the HLA risk alleles A*02:01 and DRB1*15:01. Conclusions: In a genome-wide association study, we identified rs2476601 in PTPN22 as a non-HLA variant that associates with risk of liver injury caused by multiple drugs and validated our finding in a separate cohort. This variant has been associated with increased risk of autoimmune diseases, providing support for the concept that alterations in immune regulation contribute to idiosyncratic DILI
    corecore