236 research outputs found
Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes
Myelodysplastic syndromes and chronic myelomonocytic leukemia are blood disorders characterized by ineffective hematopoiesis and progressive marrow failure that can transform into acute leukemia. The DNA methyltransferase inhibitor 5-azacytidine (AZA) is the most effective pharmacological option, but only ∼50% of patients respond. A response only manifests after many months of treatment and is transient. The reasons underlying AZA resistance are unknown, and few alternatives exist for non-responders. Here, we show that AZA responders have more hematopoietic progenitor cells (HPCs) in the cell cycle. Non-responder HPC quiescence is mediated by integrin α5 (ITGA5) signaling and their hematopoietic potential improved by combining AZA with an ITGA5 inhibitor. AZA response is associated with the induction of an inflammatory response in HPCs in vivo. By molecular bar coding and tracking individual clones, we found that, although AZA alters the sub-clonal contribution to different lineages, founder clones are not eliminated and continue to drive hematopoiesis even in complete responders.The authors acknowledge funding from the National Health and
Medical Research Council (NHMRC), Leukaemia Foundation, Anthony Rothe
Foundation, Cancer Institute for New South Wales, South Eastern Area Laboratory Services (SEALS), Wellcome Trust, Leukemia and Lymphoma Society,
Medical Research Council (UK), Swedish Cancer Society, Cancer Society in
Stockholm, Swedish Research Council, Bloodwise UK, and the NIHR Biomedical Research Centre, Oxford
Recommended from our members
Cohesin-dependent regulation of gene expression during differentiation is lost in cohesin-mutated myeloid malignancies.
Cohesin complex disruption alters gene expression, and cohesin mutations are common in myeloid neoplasia, suggesting a critical role in hematopoiesis. Here, we explore cohesin dynamics and regulation of hematopoietic stem cell homeostasis and differentiation. Cohesin binding increases at active regulatory elements only during erythroid differentiation. Prior binding of the repressive Ets transcription factor Etv6 predicts cohesin binding at these elements and Etv6 interacts with cohesin at chromatin. Depletion of cohesin severely impairs erythroid differentiation, particularly at Etv6-prebound loci, but augments self-renewal programs. Together with corroborative findings in acute myeloid leukemia and myelodysplastic syndrome patient samples, these data suggest cohesin-mediated alleviation of Etv6 repression is required for dynamic expression at critical erythroid genes during differentiation and how this may be perturbed in myeloid malignancies
Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol
Prognostic stratification is critical for making therapeutic decisions and maximizing survival of patients with acute myeloid leukemia. Advances in the genomics of acute myeloid leukemia have identified several recurrent gene mutations whose prognostic impact is being deciphered. We used HaloPlex target enrichment and Illumina-based next generation sequencing to study 24 recurrently mutated genes in 42 samples of acute myeloid leukemia with a normal karyotype. Read depth varied between and within genes for the same sample, but was predictable and highly consistent across samples. Consequently, we were able to detect copy number changes, such as an interstitial deletion of BCOR, three MLL partial tandem duplications, and a novel KRAS amplification. With regards to coding mutations, we identified likely oncogenic variants in 41 of 42 samples. NPM1 mutations were the most frequent, followed by FLT3, DNMT3A and TET2. NPM1 and FLT3 indels were reported with good efficiency. We also showed that DNMT3A mutations can persist post-chemotherapy and in 2 cases studied at diagnosis and relapse, we were able to delineate the dynamics of tumor evolution and give insights into order of acquisition of variants. HaloPlex is a quick and reliable target enrichment method that can aid diagnosis and prognostic stratification of acute myeloid leukemia patients.This project was funded by the Wellcome Trust. NB is a fellow of the European
Hematology Association and was supported by the Academy of Medical Sciences.
EP is a European Hematology Association Advanced Research Fellow. GV is a
Wellcome Trust Senior Fellow in Clinical Science. IV is funded by Spanish
Ministerio de EconomÃa y Competitividad subprograma Ramón y Cajal
Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study
Chromosomal abnormalities are established prognostic markers in adult ALL. We assessed the prognostic impact of established chromosomal abnormalities and key copy number alterations (CNA) among 652 patients with B-cell precursor ALL treated on a modern MRD driven protocol. Patients with KMT2A-AFF1, complex karyotype (CK) and low hypodiploidy/near-triploidy (HoTr) had high relapse rates 50%, 60% & 53% and correspondingly poor survival. Patients with BCR-ABL1 had an outcome similar to other patients. JAK-STAT abnormalities (CRLF2, JAK2) occurred in 6% patients and were associated with a high relapse rate (56%). Patients with ABL-class fusions were rare (1%). A small group of patients with ZNF384 fusions (n = 12) had very good survival. CNA affecting IKZF1, CDKN2A/B, PAX5, BTG1, ETV6, EBF1, RB1 and PAR1 were assessed in 436 patients. None of the individual deletions or profiles were associated with survival, either in the cohort overall or within key subgroups. Collectively these data indicate that primary genetic abnormalities are stronger prognostic markers than secondary deletions. We propose a revised UKALL genetic risk classification based on key established chromosomal abnormalities: (1) very high risk: CK, HoTr or JAK-STAT abnormalities; (2) high risk: KMT2A fusions; (3) Tyrosine kinase activating: BCR-ABL1 and ABL-class fusions; (4) standard risk: all other patients
Diagnostic utility of whole genome sequencing in adults with B-other acute lymphoblastic leukemia
Genomic profiling at diagnosis of B-cell precursor Acute Lymphoblastic Leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification and treatment decisions. Patients for which diagnostic screening fails to identify disease defining or risk stratifying lesions are classified as B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) on paired tumor-normal samples. For 52 B-other patients we compared WGS findings to data from clinical and research cytogenetics. WGS identifies a cancer associated event in 51/52 cases, this includes an established subtype defining genetic alteration in 5/52 that were previously missed by standard-of-care genetics. Of the 47 true B-other ALL we identified a recurrent driver in 87% (41). Complex karyotype by cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r, IGK::BCL2). For a subset of 31 cases, we integrate findings from RNA-sequencing (RNA-seq) analysis to include fusion gene detection, and classification by gene expression. Compared to RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes, however RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrate that WGS can identify clinically relevant genetic abnormalities missed by standard-of-care testing and identify leukemia driver events in virtually all cases of B-other ALL
Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.
SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology
Interaction between Myelodysplasia-Related Gene Mutations and Ontogeny in Acute Myeloid Leukemia
Accurate classification and risk stratification are critical for clinical decision making in patients with acute myeloid leukemia (AML). In the newly proposed World Health Organization and International Consensus classifications of hematolymphoid neoplasms, the presence of myelodysplasia-related (MR) gene mutations is included as 1 of the diagnostic criteria for AML, AML-MR, based largely on the assumption that these mutations are specific for AML with an antecedent myelodysplastic syndrome. ICC also prioritizes MR gene mutations over ontogeny (as defined in the clinical history). Furthermore, European LeukemiaNet (ELN) 2022 stratifies these MR gene mutations into the adverse-risk group. By thoroughly annotating a cohort of 344 newly diagnosed patients with AML treated at the Memorial Sloan Kettering Cancer Center, we show that ontogeny assignments based on the database registry lack accuracy. MR gene mutations are frequently observed in de novo AML. Among the MR gene mutations, only EZH2 and SF3B1 were associated with an inferior outcome in the univariate analysis. In a multivariate analysis, AML ontogeny had independent prognostic values even after adjusting for age, treatment, allo-transplant and genomic classes or ELN risks. Ontogeny also helped stratify the outcome of AML with MR gene mutations. Finally, de novo AML with MR gene mutations did not show an adverse outcome. In summary, our study emphasizes the importance of accurate ontogeny designation in clinical studies, demonstrates the independent prognostic value of AML ontogeny, and questions the current classification and risk stratification of AML with MR gene mutations
- …